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ABSTRACT
The objective of pre-trained language models is to learn contextual

representations of textual data. Pre-trained language models have

become mainstream in natural language processing and code mod-

eling. Using probes, a technique to study the linguistic properties

of hidden vector spaces, previous works have shown that these

pre-trained language models encode simple linguistic properties

in their hidden representations. However, none of the previous

work assessed whether these models encode the whole grammati-

cal structure of a programming language. In this paper, we prove

the existence of a syntactic subspace, lying in the hidden representa-

tions of pre-trained language models, which contain the syntactic

information of the programming language. We show that this sub-

space can be extracted from the models’ representations and define

a novel probing method, the AST-Probe, that enables recovering

the whole abstract syntax tree (AST) of an input code snippet. In

our experimentations, we show that this syntactic subspace exists

in five state-of-the-art pre-trained language models. In addition,

we highlight that the middle layers of the models are the ones that

encode most of the AST information. Finally, we estimate the opti-

mal size of this syntactic subspace and show that its dimension is

substantially lower than those of the models’ representation spaces.

This suggests that pre-trained language models use a small part of

their representation spaces to encode syntactic information of the

programming languages.

KEYWORDS
pre-trained language models, abstract syntax tree, probing, pro-

gramming languages
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1 INTRODUCTION
The naturalness hypothesis of software [17] states that code is a

form of human communication bearing similar statistical properties

to those of natural languages. Since this key finding, much work

has focused on the application of deep learning (DL) and natural

language processing (NLP) to learn semantically meaningful repre-

sentations of source code artifacts [4]. These representations are vec-

tors that lie in hidden representation spaces of the DL model. These

DL-based approaches have drastically improved the automation of

a wide range of code-related tasks such as code completion [23, 35],

code search [9, 18] or code summarization [8]. In particular, the

state-of-the-art leverages pre-trained language model architectures

such as those of BERT [13, 22] or GPT [7, 28, 29] to learn repre-

sentations of source code. Among others, CodeBERT [14], Graph-

CodeBERT [15], CodeT5 [39] or Codex [10] have shown great per-

formance and flexibility to lots of downstream tasks thanks to

task-specific fine-tuning objectives.

A wide range of previous work has shown the great potential

of these models in automating many tasks. However, what these

models learn in their hidden representation spaces remains an open

question. In this paper, we analyze the hidden representation spaces

of pre-trained language models to broaden our understanding of

these models and their use in automated software engineering. In

the NLP field, probing emerged as a technique to assess whether

hidden representations of neural networks encode specific linguis-

tic properties [2, 5, 16]. A probe is a simple classifier that takes

the model’s hidden representations as input and predicts a linguis-

tic property of interest. Recently, some previous works relying on

probes have shown that the hidden representation spaces of these

models encode linguistic properties of the input code and underly-

ing programming language. Among others, Wan et. al [38] showed

that unlabeled binary trees can be recovered from the representa-

tions of an input code. Even though this property is non-trivial, we

foresee that hidden representations of pre-trained language models

https://doi.org/10.1145/3551349.3556900
https://doi.org/10.1145/3551349.3556900
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encode more complex constructions of the programming languages.

In particular, previous contributions have not proposed a probing

method that can probe the whole grammatical structure, i.e., the
abstract syntax tree (AST), of a programming language in the hid-

den representation spaces of pre-trained language models. In this

work, we aim to bridge this gap and determine whether pre-trained
language models encode the whole ASTs of input code snippets in their
hidden representation spaces.

We propose the AST-Probe, a novel probing approach that evalu-

ates whether the AST of an input code snippet is encoded in the

hidden representations of a given pre-trained language model. Our

approach relies on the hypothesis that there exists a syntactic sub-
space, lying in the hidden representation spaces of the pre-trained

language model, that encodes the syntactic information of the input

programming language related to the AST. Using our probe, we

aim to predict the whole AST of an input code and thus show that

pre-trained language models implicitly learn the programming lan-

guage’s syntax. More specifically, the idea is to project the hidden

representation of an input code to the syntactic subspace and use

the geometry of this subspace to predict the code AST.

We evaluate the AST-Probe on five state-of-the-art pre-trained

language models to demonstrate the generalizability of the probe

and provide in-depth analysis and discussion. We also attempt to

estimate the optimal size of the syntactic subspace, i.e., its com-

pactness, to understand how many dimensions are used by the

pre-trained language models to store AST-related syntactic infor-

mation of the programming languages.

The contributions of this work are the following.

(1) AST-Probe: A language-agnostic probing method able to

recover whole ASTs from hidden representations of pre-

trained language models to assess their understanding of

programming languages syntax.

(2) A representation of ASTs as a compact tuple of vectors

adapted from [34] that can be used for probing pre-trained

language models.

(3) An extensive evaluation of the AST-Probe approach on a

variety of pre-trained language models: CodeBERT [14],

GraphCodeBERT [15], CodeT5 [39], CodeBERTa [41] and

RoBERTa [22], and programming languages: Python, Javascript

and Go.

(4) An estimation of the compactness of the optimal syntac-

tic subspace by comparing different dimensions of possible

subspaces.

Organization. Section 2 gives a brief overview of the technical

background and discusses related work. In Section 3, we describe

the AST-Probe in-depth. In Section 4 and 5, we go through our ex-

perimental setup and discuss the results of our experiments. Finally,

in Section 6, we discuss the main findings of this work and broader

analysis. We close this paper in Section 7 with future work and a

conclusion.

2 BACKGROUND AND RELATEDWORK
2.1 Pre-trained language models
Traditional NLP models were designed to be task-specific, i.e.,
trained on specific data, and using specific learning objective func-

tions. In recent years, this paradigm has shifted to pre-training large

language models on large text corpora in a self-supervised fash-

ion. These models are pre-trained using relatively general learning

objectives to learn representations of the pre-training data. They

can then be fine-tuned on a wide range of task-specific data and

generally show impressive results [26].

Modern pre-trained language models are based on the Trans-

former architecture [37]. Pre-trained languagemodels can be roughly

classified into three categories [26]: autoregressive language mod-
els, masked language models, and encoder-decoder language models.
Autoregressive language models’ objective is to learn to predict

the next word in a sequence by expanding a history made of the

previous words through time steps (e.g., GPT-3 [7], CodeGPT [24]

or Codex [10]). Masked language models are trained with the ob-

jective to predict a masked word given the rest of the sequence

as context (e.g., BERT [13], CodeBERTa [41], CodeBERT [14] and

GraphCodeBERT [15]). Finally, encoder-decoder language models

can be trained on a sequence reconstruction or translation objective

(e.g., T5 [30], BART [30], CodeT5 [39] and PLBART [3]).

A language model takes a sequence of tokens as input and pro-

duces a set of contextualized vector representations. More con-

cretely, let us denote w0, . . . ,wn a sequence of n + 1 tokens. A

language model of L transformer layers consists of the calculus of

the final embeddings in the following way:

H ℓ = Transformerℓ(H
ℓ−1) ,∀ ℓ = 1, . . . ,L

where H ℓ = [hℓ
0
, . . . ,hℓn ], and each vector hℓi corresponds to the

embedding of the token wi . Transformerℓ is a transformer layer

made of multi-head attention layers, residual connections, and a

feed-forward neural network. H0
refers to the initial embeddings

computed as a sum of the positional encodings and the initial to-

ken embeddings. In this paper, we are interested in the syntactic

information encoded in the vectors hℓi ∈ H
ℓ
for ℓ = 1, . . . ,L.

Finally, even though we focus on hidden vector representations

in this work, it is worthmentioning that the attention layers of these

transformer architectures contain valuable information. Several

previous works have attempted to discover what information is

encoded in the attention heads of transformer-based models of code.

For instance, Wan et. al [38] showed that the attention is aligned

with the motif structure of the AST, Sharma et. al [33] explored the

attention layers of BERT pre-trained on code, and Paltenghi and

Pradel [27] compared the attention weights with the reasoning of

skilled humans. As we specifically aim at probing deep learning

models, we focus the next two sections on this technique and its

usage in the related work.

2.2 Probing in NLP
Pre-trained languagemodels are powerfulmodels that have achieved

state-of-the-art results not only on NLP but also in code-related

tasks. However, one issue that we aim to tackle in this paper is that

it is not possible to get a direct understanding of to what extent

these models capture specific properties of a language. In this view,

probing classifiers are used to probe and analyze neural networks. A
probe is a simple

1
classifier trained to predict a particular linguistic

property from the hidden representations of a neural network [5].

If the probe performs well, it is said that there is evidence that the

1
The term simple usually means minimally parameterised [25].
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neural network representations embed the linguistic property. For

instance, Belinkov et al. [6] used this framework to perform part-

of-speech tagging using the representations of a neural machine

translation model. Another example taken from Adi et al. [2] is

trying to predict an input sequence length from its hidden vector

representation.

In the context of syntax, syntactic probes are used to assess if

word representations encode syntactic information of the input

language. One example is the Structural Probe proposed by Hewitt

and Manning [16] that is used to assess if dependency trees are

embedded in the hidden representations of language models. The

procedure consists of training a linear transformation whose tar-

get vector space has the following property: the squared distance
between two transformed word vectors is approximately the distance
between these two words in the dependency parse tree. Once the

probe is trained, the dependency tree can be reconstructed using

the distance between each pair of words in the linearly-transformed

representation space [16, 25, 40].

In this paper, we adopt similar reasoning to assess if pre-trained

language models of code encode the AST in their hidden representa-

tions. Our probe is also syntactic, but the target tree is of a different

type. We consider ASTs, which are more complex constructions

than dependency trees as they contain labeled non-terminal nodes

that are not seen in the sequence of input tokens. Moreover, our

probing approach is different as we consider an orthogonal projec-

tion rather than an arbitrary linear transformation. It allows us to

thoroughly define the syntactic subspace (see Section 3).

2.3 Probing in pre-trained language models of
code

The idea of probing languages models trained on code has been

recently introduced, and thus only a few related works have been

produced on this research topic over the past couple of years.

Karmakar and Robbes [19] proposed a first method for probing

pre-trained language models of code. Through a set of four probing

tasks, the authors analyzed the ability of pre-trained language mod-

els to capture some simple properties of programming languages.

In their work, they concluded that these models implicitly capture

some understanding of code in their hidden representations. For

instance, they show that using their probes, the cyclomatic com-

plexity of a program or the length of an input code can be predicted

from a model’s hidden representations. Subsequently, Troshin and

Chirkova [36] extended their work by incorporating more models

and more probing tasks to broaden the analysis. Finally, Wan et.

al [38] designed a more complex probe that can extract unlabeled

binary trees from code representations.

Although previous works have probed interesting linguistic prop-

erties, they have not focused on designing a probe that can deter-

mine if a pre-trained language model captures the full grammati-

cal structure of programming languages. That is, previous works’

probing methods do not allow to recover whole ASTs (including
both terminal and non-terminal nodes). In particular, Troshin and

Chirkova [36] assessed whether pre-trained models understand syn-

tax by predicting several properties extracted from the AST such

as token depths and paths. Wan et. al [38]’s probe is able to predict

unlabeled binary trees at most, which are simplified versions of

ASTs that do not encode non-terminal nodes.

In this work, we propose a probing method that allows recover-

ing whole ASTs from pre-trained languagemodels’ hidden represen-

tations. The key idea of the probe is the assumption of the existence

of a syntactic subspace in the hidden representation spaces of these

models that encodes the programming languages’ syntax. This as-

sumption enables us to estimate the dimension of the subspace and

draw conclusions about how compact this information is stored

in the pre-trained language models. Thus, our method entails an

advance in the state-of-the-art since it substantially improves the

latter by assessing the models’ understanding of the whole gram-

matical structure of programming languages.

3 THE AST-PROBE APPROACH
In this paper, we propose AST-Probe, a probe to determine if pre-

trained languagemodels implicitly learn the syntax of programming

languages in their hidden representation spaces. To this end, we

assess if ASTs can be reconstructed using the information from

these hidden representation spaces that the models learn from

sequences of code tokens.

The AST-Probe looks for a syntactic subspace
2 S in one of the

hidden representation spaces of a model that is likely to contain

most of the syntactic information of the language. We obtain the

subspace S by learning an orthogonal projection of the represen-

tations of input code sequences to this subspace. Then, using the

geometrical properties of S, we show how it is possible to recon-

struct the whole AST of an input code snippet. The AST-Probe

must operate on real vectors to make predictions. Therefore, we

first reduce the ASTs of input codes to compact tuples of vectors.

The whole process is summarized in the following graph:

AST

§3.1
←→ binary tree

§3.2
←→ (ddd,ccc,uuu)

§3.3
←− AST-Probe

Given a code snippet, we extract its AST and convert it into a tuple

of vectors (ddd,ccc,uuu) that compresses all the AST information. To this

end, we adapt the approach proposed by Shen et al [34] for natural

language constituency parsing. The conversion is performed in two

steps: (1) we transform the AST into a binary tree (Sect. 3.1) and (2)

we extract the tuple from the binary tree (Sect. 3.2). Note that these

two transformations are bidirectional which allows us to recover

the binary tree and the AST from the tuple of vectors. Finally, our

AST-Probe aims at predicting the vectors (ddd,ccc,uuu) from the syntactic

subspace S and reconstruct the AST of the code snippet (Sect. 3.3).

In the following subsections, we go through these processes in

detail, explain the nature of the vectors (ddd,ccc,uuu) and how they can

be used to define a probe that recovers the whole AST from a hidden

representation space of a model.

As a running example let us consider the following Python code

snippet. Its associated AST is depicted in Fig. 1 and we use it to

illustrate our approach.

Code Listing 1: Running example.
for element in l:

if element > 0:
c+=1

2
We name this vector space the syntactic subspace, a term borrowed from [11] that

best describes the targeted subspace.
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else:
selected = element
break

for_statement

for element in l : block

if_statement

if comparison_operator :

element > 0 expression_statement

augmented_assignment

c += 1

else_clauseblock

else : block

break_statement

break

expression_statement

selected = element

expression_statement

block

break_statement

break

expression_statement

block

break_statement

breakassignment

Figure 1: AST of our running example. The rounded rectan-
gles are non-terminal nodeswhereas the circles are terminal
nodes.

3.1 AST to binary tree
First, to transform an abstract syntax tree into a binary tree, the

unary and n−ary nodes need to be binarized. Since the binary tree

associated to the full AST of our running example would not fit the

paper, we plot the binary tree that corresponds to the else block in

the non-shaded part of Fig. 2.

Given an AST, we use the following rules taken from [34] to

convert it into a binary parse tree:

• If a non-terminal node is unary, it is merged with its child. An

example of the application of this rule is shown in node 1 of

Fig. 2. In this example, the non-terminal expression_statement
is merged with assignment to form a new non-terminal node.

• If a node is n−ary, a special node ∅ is added to binarize it.

An example of the application of this rule is shown in node

2 of Fig. 2. In this example, a non-terminal node ∅ is added

to binarize the 3-ary non-terminal assignment node.
• If a non-terminal chain ends with a unique terminal node

then the chain is deleted from the binary tree and its label is

added to the terminal node. An example of the application

of this rule is shown in node 3 of Fig. 2. The non-terminal

break_statement is removed and its terminal node is labeled

with its label.

Given a binary tree, recovering its corresponding AST is rel-

atively straightforward. The process consists of removing the ∅

nodes, reconnecting the tree and expanding the unary chains.

block

break_statementexpression_statement

assignment

selected = element

block

expression_statement 
assignment

selected

= element

break

Unary label:  
break_statement

break

1 3

2

Figure 2: Excerpt of the binary tree associated to the AST of
the running example (Fig. 1).

3.2 Binary tree to tuple
In this second step, the binary tree is transformed into the vectors

tuple (ddd, ccc, uuu). The vector ddd encodes the structural information of

the AST whereas ccc anduuu encode the labeling information.

Encoding vectorddd . To constructddd , we follow the definition of [34].

Definition 3.1. Given a binary parse tree whose leaves are the

wordsw0, . . . ,wn . The syntactic distances of this tree is a vector of

scalars ddd = (d1, . . . ,dn ) such that

sign(di − dj ) = sign( ˜di−1i − ˜d
j−1
j ) for all 0 ≤ i, j ≤ n,

where
˜d
j
i is the height of the lowest common ancestor for two leaves

(wi ,w j ). This means that a vector ddd corresponds to the syntactic

distances of a given tree if and only if it induces the same ranking

order as ( ˜d0
1
, . . . , ˜dn−1n ) 3.

Encoding vectors ccc anduuu. Obtaining the vectors ccc anduuu is more

straightforward. In particular,ccc is a vector of the same dimension as

ddd that contains the label of the lowest common ancestor for every

two consecutive tokens. Whereas,uuu is a vector whose dimension is

the number of terminals containing the unary labels.

For sake of completeness, we replicate here the algorithms of [34]

performing the required adaptations. The procedure to convert a

binarized AST into a tuple is shown in Algorithm 1. Whereas the

Algorithm 2 describes how to recover the AST from the tuple.

For instance, let us consider the excerpt in Fig. 2 (right). The

tree has four leaves thus the size of the vectors ddd , ccc and uuu are

three, three and four respectively. In particular, the vector (2, 1, 3)

corresponds to ( ˜d0
1
, ˜d1

2
, ˜d2

3
). Hence, every vector ddd that verifies the

ranking d3 > d1 > d2 is valid. On the other hand, the vectors ccc
anduuu are (expresion_statement-assignment, ∅, block) and (∅, ∅, ∅,

break_statement) respectively. In the context of uuu, the symbol ∅

means that the terminal node does not have an unary label.

3.3 Syntactic subspace and probing classifier
Let us denoteM a deep model that receives a sequence l of code

tokenswl
0
, . . . ,wl

n as input and outputs a vector representation for

each token hl
0
, . . . ,hln ∈ R

m1
. Additionally, let us assume that the

tuple (ddd, ccc, uuu) is a valid tuple associated to the AST of the code

sequence l .
Our hypothesis is that there exists a syntactic subspace S ⊆

Rm1
that encodes the AST information (Fig. 3). The objective of

3
Note that the vector ( ˜d0

1
, . . . , ˜dn−1n ) also defines valid syntactic distances.



AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models ASE ’22, October 10–14, 2022, Rochester, MI, USA

Algorithm 1 Binary tree to (ddd,ccc,uuu) function extracted from [34]

1: function tree2tuple(node)

2: if node is leaf then
3: ddd ← []
4: ccc ← []
5: h ← 0

6: if node has unary_label then
7: uuu ← [node.unary_label]
8: else
9: uuu ← [∅]
10: end if
11: else
12: l , r ← children of node

13: dddl , cccl , uuul , hl ← tree2tuple(l)
14: dddr , cccr , uuur , hr ← tree2tuple(r )
15: h ← max(hl ,hr ) + 1
16: ddd ← dddl ++ [h] ++dddr ▷ The operator ++ means concat
17: ccc ← cccl + + [node.c_label] + +dddr
18: uuu ← uuul + +uuur
19: end if

return ddd, ccc, uuu, h
20: end function

Algorithm 2 (ddd,ccc,uuu) to binary tree function extracted from [34]

1: function tuple2tree(ddd,ccc,uuu)
2: if ddd == [] then
3: node← Leaf(uuu[0])
4: else
5: i ← argmaxi (ddd)
6: childl ← tuple2tree(ddd<i , ccc<i , uuu≤i )
7: childr ← tuple2tree(ddd>i , ccc>i , uuu>i )
8: node← Node(childl , childd , ccc[i])
9: end if

return node

10: end function

element

in

l

:

for

Figure 3: Visualization of the projection. The dotted blue
lines represent the projection PS of the token representa-
tions onto the syntactic subspace.

the AST-Probe is to learn a syntactic subspace S from a hidden

representation space of the modelM and assess how well the tuple

Figure 4: Overview of the AST-Probe. The syntactic vectors
are obtained using the projection PS (see Fig. 3).

(ddd, ccc, uuu) can be predicted from this subspace. We learn S using our

probe by projecting the representations hli onto S. These projected
representations are then used to predict the vectorsddd , ccc anduuu using

the geometry inside S, i.e., the dot product.
Knowing the subspace S, each word vector can be decomposed

into a sum of two projections:

hli = PS(h
l
i ) + PS⊥ (h

l
i ),

PS(h
l
i ) contains the syntactic information of hli , whereas PS⊥ (h

l
i )

contains the rest of the original word embedding information. The

projection PS(h
l
i ) is what we call the syntactic vector ofw

l
i .

An overview of the probe is shown in Fig. 4. First, we project

the word vectors onto S to get the syntactic vectors. Then, they

are used to infer ddd , ccc anduuu using the square Euclidean distance, a

set of vectors C and a set of vectorsU.

In the remaining of this section, we go through our probe in more

detail. Let us consider B a matrix of dimensionm2 ×m1 whosem2

rows define an orthonormal basis of S. The vector Bhli corresponds

to the coordinates of PS(h
l
i )with respect to this basis. In the training

procedure, we learn B and two sets of vectors C,U ⊂ S forcing

the following conditions:

(1)
ˆdi := d

(
PS(h

l
i−1), PS(h

l
i )
)
2

= ∥Bhli−1 − Bh
l
i ∥

2

2
is a syntactic

distance (see Def. 3.1) for all 1 ≤ i ≤ n.
(2) For all i = 1, . . . ,n, PS(h

l
i−1)−PS(h

l
i ) is similar to the vector

vci ∈ C i.e., ⟨PS(hli−1) − PS(h
l
i ),vci ⟩ is high.

(3) For all i = 0, . . . ,n, Bhli is similar to the vector vui ∈ U i.e.,
⟨PS(h

l
i ),vui ⟩ is high.

|C| and |U| are the number of distinct labels that appear in the

vectors ccc anduuu, respectively. Since C,U ⊂ S, we define these vec-
tors with respect to the orthonormal basis induced by B. Therefore,
the number of total parameters in the probe ism1 ·m2 +m2(|C| +

|U|) ∈ O(m2). It is important to note that the complexity of the

probe is given by the dimension of S i.e.,m2. Thus, our probe fits

the definition of a simple probing classifier.

In order to achieve optimality of the subspace S, we minimize

a loss function composed of the sum of three losses and a regular-

ization term: L = Lddd + Lccc + Luuu + λ · OR(B). The first loss is a
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pair-wise learning-to-rank loss:

Lddd =
∑
i, j>i

ReLU

(
1 − sign( ˜di−1i − ˜d

j−1
j )(

ˆdi − ˆdj )
)
.

We use this loss since we only need the ranking information of ddd
to recover the AST [34] i.e., we want ddd to induce the same ranking

as ( ˜d0
1
, . . . , ˜dn−1n ). The second loss Lccc is defined as follows:

Lccc = −
∑
i
log

exp

(〈
PS(h

l
i ) − PS(h

l
i+1),vci

〉)
∑
v ∈C exp

(〈
PS(h

l
i ) − PS(h

l
i+1),v

〉) .
Using the cross-entropy loss together with the softmax function,

we ensure that the most similar vector to PS(h
l
i ) − PS(h

l
i+1) in the

set C is vci . Luuu is defined similarly:

Luuu = −
∑
i
log

exp

(
⟨PS(h

l
i ),vui ⟩

)
∑
v ∈U exp

(
⟨PS(h

l
i ),v⟩

) .
Finally, the regualization term is defined as follows [21]:

OR(B) = ∥BBT − I ∥2
F
,

where ∥ · ∥F denotes the Frobenius norm and I the identity matrix

of dimensionm2. We add this component to the loss in order to

force the basis, i.e., the rows of B, to be orthonormal.

4 EXPERIMENTS
In this section, we go through our experimental setup in detail. In

particular, we discuss the data and models used in our experiments

as well as how we assess the effectiveness of our probe using proper

evaluation metrics. To evaluate the relevance of our probe, we

articulate our experiments around the following research questions:

–RQ1: Can the AST-Probe learn to parse on top of any informative
code representation 4?

We follow the same procedure as in [16] to check if the AST-

Probe is valid. That is, we try to demonstrate that it does not deeply

look for information and just exposes what is already present in

the hidden representations [25]. To do so, we compare the accuracy

of the AST-Probe using pre-trained language models including two

baselines: a non-contextualized embedding layer and a randomly

initialized language model. If the AST-Probe is valid, a performance

gap should lie between the non-baseline models and the baselines.

– RQ2:Which pre-trained language model best encodes the AST
in its hidden representations?

We compare a total of six pre-trained language models for three

programming languages and assess which one best encodes the

AST of input codes.

– RQ3: What layers of the pre-trained language models encode
the AST better?

We apply our probe to specific hidden representation spaces of

intermediate layers of the models and compare the probe effective-

ness over the layers.

– RQ4: What is the dimension of the syntactic subspace S?
To end our experiments, we are interested in how compact is

the syntactic subspace in the hidden representation spaces of the

pre-trained language models.

4any informative representation is a term used in [16] to refer to representations that

do not contain lots of information and are simple.

Data availability. All experimental data and code used in this

paper are available at https://doi.org/10.5281/zenodo.7032076.

4.1 Data
We choose CodeSearchNet dataset [18] to conduct our experiments.

For all models, we assess their ability to capture the AST of code

snippets from three programming languages: Python, Go, and

Javascript. For each language, we extract a subset of CodeSearchNet

following a ratio of 20000/4000/2000 samples for training, test, and

validation, respectively. To extract the AST from the samples, we

use the tree-sitter compiler tool
5
. We follow then the processes

described in Sect. 3.1 and Sect. 3.2 to extract the tuples of vectors

(ddd,ccc,uuu).

4.2 Language models
We compare a broad range of pre-trained language models carefully

selected from the state-of-the-art to perform a thorough analysis

and bring meaningful discussions to the paper. We summarize the

models used in our experiments in Table 1.

The first two rows describe baseline models. CodeBERT-0 refers

to an embedding layer initialized with CodeBERT’s weights. In this

model, the code embeddings are uncontextualized as they are ex-

tracted before feeding them to the transformer layers of CodeBERT.

In CodeBERTrand, the embedding layer is initialized similarly to

CodeBERT-0, but the rest of the layers are randomly initialized.

Here, the idea is to randomly contextualize CodeBERT-0. This type

of baseline has been used in previous natural language processing

related work as strong baselines to evaluate probes [11, 12, 16].

Our main models for comparison are CodeBERT, GraphCode-

BERT, CodeT5, CodeBERTa and RoBERTa. Note that for CodeT5,

we only consider the encoder layers of the encoder-decoder ar-

chitecture. Finally, RoBERTa is an optimized version of BERT [13]

trained on natural language texts. We include this model in our

analysis to check if a model not trained on code is able to capture

some understanding of the syntax of programming languages.

4.3 Evaluation metrics
The output of the AST-Probe is a prediction for the vectorsddd ,ccc anduuu.
To get a meaningful interpretation of the effectiveness of themodels,

we compare the predicted AST, i.e., recovered from the vectors

ddd , ccc and uuu, with the ground-truth AST. To this end, we compute

the precision, recall and F1−score over tree constituents [1]. These
three metrics are used in the NLP literature to evaluate constituency

parsers and are defined as:

Prec =
| Const. in prediction | ∩ | Const. in ground-truth |

| Const. in prediction |

Recall =
| Const. in prediction | ∩ | Const. in ground-truth |

| Const. in ground-truth |

F1 =
2 · Prec · Recall

Prec + Recall
In the context of ASTs, we define the constituents as (non-

terminal, scope) where scope indicates the position of the first and

last tokens. There is one constituent for each non-terminal node.

5
https://tree-sitter.github.io/tree-sitter/

https://doi.org/10.5281/zenodo.7032076
https://tree-sitter.github.io/tree-sitter/
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Table 1: Summary of the models used in our experiments.

Model Architecture Number of layers Training data Dataset

CodeBERT-0 embedding layer 1 code/doc bimodal CodeSearchNet [18]

CodeBERTrand CodeBERT, init. random 12 no training −

CodeBERT [14] transformer encoder 12 code/doc bimodal CodeSearchNet [18]

GraphCodeBERT [15] transformer encoder 12 code/doc bimodal + data flow CodeSearchNet [18]

CodeT5 [39] transformer encoder-decoder 12 code/doc bimodal CodeSearchNet [18] + BigQuery C/C#

CodeBERTa [41] transformer encoder 6 code/doc bimodal CodeSearchNet [18]

RoBERTa [22] transformer encoder 12 natural language text BookCorpus [42] + English Wikipedia

block

breakexpression_statement

augmented_assignment

selected = element

Figure 5: Excerpt of a predicted AST.

For instance, the constituents of the AST of Fig. 2 (left) are the

following:

(1) (block, from selected to break)
(2) (expression_statement, from selected to element)
(3) (assignment, from selected to element)
(4) (break_statement, from break to break)
Let us assume that our predicted AST with respect to that block

is the one of the Fig. 5. Thus, its constituents are the following (✓

represents a hit and ✗ a miss with respect to the true AST):

(1) (block, from selected to break) ✓

(2) (expression_statement, from selected to element) ✓

(3) (augmented_assignment, from selected to element) ✗

In that case, the precision and recall are 2/3 and 2/4, respectively.

4.4 Addressing the research questions
To answer RQ1/2/3, we train the AST-Probe for each combination

of programming language, model and model layer while fixing the

dimension of the syntactic subspace tom2 = 128. And, we report

the three evaluation metrics (precision, recall and F1−score).
To answer RQ4, we select the layer of each model that yields

the best F1−score. We then train several configurations of the AST-

Probe by varying the maximum number of dimensions of the syn-

tactic subspace starting from eight up until 512 using powers of

two.

4.5 Training details
All the considered models were pre-trained using byte-pair encod-
ing (BPE) [32] which constructs the vocabulary of the model over

subwords. Since our analysis is performed over whole-word tokens,

we assign to each token representation the average of its subword

representations [16, 38]. For all models, the dimension of the word

embedding space ism1 = 768. Finally, we set the orthogonal regular-

ization term to a high value λ = 5 in order to ensure orthogonality

of the basis induced by the matrix B (see Sect. 3.3).

To perform the optimization, we use the Adam optimizer [20]

with an initial learning rate of 0.001. After each epoch, we reduce

the learning rate by multiplying it by 0.1 if the validation loss

does not decrease. We set the maximum number of epochs to 20

and use early-stopping with a patience of five epochs. A similar

configuration of hyperparameters is used in [16] to train the syntax

probe.

5 RESULTS
In this section, we report the results of our experiments and answer

our four research questions.

5.1 RQ1 – Validity of the AST-Probe
For each model and language, we show in Table 2 the accuracy

of the AST-Probe in the layer of the model that obtained the best

F1−score. We can notice a significant performance gap between the

baselines and the rest of the models for all considered programming

languages and across all metrics. This result validates the probe as

it cannot generate ASTs from any informative code representations.

Additionally, we report in Fig. 7 the AST reconstructed by the

probe using the representations of CodeBERTrand-10 (best of the

baselines) and GraphCodeBERT-4 (best of the non-baseline models)

for a Python code snippet. In this example, GraphCodeBERT per-

forms very well, with a perfect precision score, and the predicted

AST is very similar to the ground-truth. As for the baseline, we can

observe that the predicted AST contains mistakes even though the

chosen code snippet is very simple.

Answer to RQ1: We answer negatively to this research ques-

tion. That is, the performance gap between the baselines and

the other models shows that the AST-Probe is not able to learn

to parse on top of any informative code representation. The

AST-Probe is thus valid.
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Metrics

Model-BestLayer Precision Recall F1
CodeBERT-0 0.3262 0.4003 0.3573

CodeBERTrand-10 0.3383 0.4167 0.3710

CodeBERT-5 0.7398 0.7657 0.7513

GraphCodeBERT-4 0.7468 0.7647 0.7545
CodeT5-7 0.6957 0.7097 0.7016

CodeBERTa-4 0.6620 0.6760 0.6679

RoBERTa-5 0.6724 0.6993 0.6841

(a) Python
Metrics

Model-BestLayer Precision Recall F1
CodeBERT-0 0.3358 0.4045 0.3658

CodeBERTrand-11 0.3327 0.4055 0.3642

CodeBERT-5 0.7092 0.7297 0.7186

GraphCodeBERT-4 0.7131 0.7277 0.7196
CodeT5-6 0.6650 0.6775 0.6706

CodeBERTa-5 0.6373 0.6561 0.6459

RoBERTa-8 0.6460 0.6724 0.6580

(b) JavaScript
Metrics

Model-BestLayer Precision Recall F1
CodeBERT-0 0.4337 0.4932 0.4589

CodeBERTrand-11 0.4403 0.5071 0.4692

CodeBERT-5 0.8029 0.8254 0.8134

GraphCodeBERT-5 0.8135 0.8314 0.8218
CodeT5-8 0.7710 0.7889 0.7792

CodeBERTa-4 0.7762 0.7944 0.7846

RoBERTa-5 0.7513 0.7819 0.7653

(c) Go
Table 2: Results of the AST-Probe for each model and lan-
guage. We report the best layer of each model together with
the baselines. For each metric, the highest value is in bold
and the second highest is underlined.

GraphCodeBERT
CodeBERT
CodeT5
RoBERTa
CodeBERTa
CodeBERTrand

F1
-s

co
re

Layer
0 1 2 3 4 5 6 7 8 9 10 11 12

0.7

0.6

0.5

0.4

Figure 6: Result of the probe for each model according to
their layers. The x−axis represents the layer number and
the y−axis the F1−score. The CodeBERTrand’s layer 0 cor-
responds to CodeBERT-0.

5.2 RQ2 – Best model
Overall, the best models are CodeBERT and GraphCodeBERT for

all programming languages in terms of F1−score. As the difference
in F1−score between both models is very marginal, e.g., +0.0032 F1
in Python, +0.0010 F1 in JavaScript, and +0.0084 F1 in Go in favor

of GraphCodeBERT, it is not possible to firmly conclude on which

model is better than the other.

One interesting finding related to this RQ is the fact that, even

though trained on text data, RoBERTa competeswithmodels trained

on code and is able to understand syntactic information of code. For

all languages, RoBERTa achieves similar results with CodeT5. And,

in the case of Python and JavaScript, it outperforms CodeBERTa.

Answer to RQ2: Among all the considered models, both

CodeBERT and GraphCodeBERT best capture the AST in their

hidden representations for all programming languages.

5.3 RQ3 – Best layers
Table 2 shows that for RoBERTa, the 5th and 8th layers are the

best in terms of F1−score. For CodeT5, the best F1−score lies in the

6-7-8th layers. For CodeBERT, GraphCodeBERT, and CodeBERTa,

the best F1−score lies in the 4-5th layers. In Fig. 6, we plot the

accuracy of the AST-Probe in terms of F1−score for all models with

respect to their hidden layer for Python
6
. For all the models, we

can observe a peak in F1−score in the middle layers.

Answer to RQ3: For all models, the AST information is more

encoded in their middle layers’ representations.

5.4 RQ4 – Estimating the dimension of S
In Fig. 8, we plot the F1−scores for each model by varying the di-

mension of the syntactic subspace for Python
7
. All these curves

have a bell shape due to two reasons: (1) whenm2 is too small, the

number of dimensions is not enough to encode the AST, and (2)
whenm2 tends tom1, and due to the orthogonality constraint, the

projection PS tends to produce a rotation of the initial representa-

tion space. Thus, ifm2 →m1 then ⟨Bx ,By⟩ → ⟨x ,y⟩ meaning that

we are using the full 768-dimensional word vectors, i.e., without
preprocessing through a projection, when predicting the AST. It

yields a bad performance because the full vectors encode lots of

information not only related to syntax. And, we are only interested

in the part of the representation space that encodes the syntax,

which is ultimately extracted by the orthogonal projection.

The representation space has 768 dimensions, and the dimension

of the syntactic subspace ranges between 64 and 128. It holds across

all languages and all models. Only a small part of the representation

space is used to encode the AST. It means that the pre-trained

language models do not use too many resources to understand the

language’s syntax as the syntactic information is compactly stored

in a relatively low-dimensional subspace.

6
The shapes of the curves are similar for JavaScript and Go.

7
The shapes of the curves are similar for JavaScript and Go.
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if_statement

comparison_operator

return_statement

block
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( a , b )

:maximum
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a > b

if

return a

return_statement

return b

def maximum(a, b): 
if a > b: 

        return a 
return b 

(a) Ground-truth

function_definition

def if_statement

comparison_operator

return_statement

block

parameters

( a , b )

:maximum

a > b

if

return a

return_statement

return b:

(b) GraphCodeBERT-4
function_definition

def if_statement

comparison_operator

return_statement
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a , b )

maximum

:

a > b

if

return a

return_statement

return b

dictionary_splat_pattern :

block
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(c) CodeBERTrand-10

Figure 7: RecoveredAST using the probe from the hidden representations of GraphCodeBERT-4 andCodeBERTrand-10. Green
rounded rectangles represent constituent hits with respect to the ground-truth AST, and red ones represent misses.
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Figure 8: Result of the probe for each model and their best
layer according to the dimension of the syntactic subspace
for Python. The x−axis represents the dimension of the sub-
space and the y−axis the F1−score.

Answer to RQ4: The dimension of the syntactic subspace

ranges between 64 and 128.

6 DISCUSSION
In this work, we have successfully shown the existence of a syntactic
subspace in the hidden representations of a set of five pre-trained

language models that encode the information related to the code’s

AST. From these models, GraphCodeBERT and CodeBERT are the

ones that best encode this syntactic information of the languages.

Furthermore, we show that all the probed models mostly store

this information in their middle layers. Finally, our last experiment

highlights that the models store the information in a syntactic

subspace of their hidden representation spaces with a dimension

ranging between 64 to 128.

Our conclusion concerning the best layers is aligned with the

results obtained by Troshin and Chirkova [36] and Wan et. al [38],

where they apply different syntactic probes. In NLP, BERT encodes

the syntactic knowledge of natural languages in its middle lay-

ers [31], which lines up with our conclusion for programming

languages. An interesting future would be to continue developing

probes to search for more properties intricated in the models’ repre-

sentation spaces. Then, try to determine what type of information

the models learn in each of their hidden layers.

In their work, Wan et. al [38] proposed a structural probe also

based on the notion of syntactic distance (see Def. 3.1) that can

recover unlabeled binary trees from hidden representations and

attention layers. Our probe tackles this limitation of their work

by recovering full ASTs from hidden representations which is a

more complex structure closer to the syntax of the language than

unlabeled binary trees.

Furthermore, we claim that Wan et. al [38]’s probe presents two

main issues. Firstly, they compare abstract syntax trees (ground-

truth) with unlabeled binary trees (predicted using their probe).
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The metric they use to compare both trees is difficult to interpret

as they are not comparing trees of the same nature. The metric also

contains a random component. We believe that our approach and

experiments cope with this limitation as we compare ground-truth

ASTs with ASTs induced using the AST-Probe. Furthermore, we use

a metric widely used in the NLP literature to evaluate constituency

parsers.

The second issue relates to the fact that they extract the unlabeled

binary trees from the whole hidden representation spaces, i.e., they
take all their dimensions into account. Our analysis of the dimen-

sion of the syntactic subspace shows that few dimensions of the

hidden representation spaces are used by the models to encode syn-

tax. In their work, the authors report that unlabeled binary trees

extracted from the attention information produce better results

than those extracted from hidden representations. We claim that

this can be explained by the fact that they extract unlabeled binary

trees from the whole hidden representation spaces of the model.

This approach may yield poor results as these representation spaces

contain lots of information that are not only related to syntax.

In fact, in our last experiment, we conclude that the syntac-

tic information is stored compactly in a low-dimensional space

with a size ranging between 64 and 128. This means that between

8.3% (64/768) and 16.7% (128/768) of the dimensions of the full

representation space are used to store AST-related information of

the code. To the best of our knowledge, this is the first work that

carries out this type of analysis. This finding raises questions about

the nature of the information encoded in the rest of the dimensions

which is an exciting direction for future work.

In this work, we report theoretical findings of the hidden repre-

sentations of pre-trained language models. We envision that these

findings can have broader practical implications. For instance, it

seems that GraphCodeBERT recovers ASTs marginally better than

CodeBERT. This is correlated with the fact that GraphCodeBERT

performs better than CodeBERT in several downstream tasks (e.g.,
code search, code translation, etc) [15]. Thus, a good research direc-

tion could be to highlight correlations between how well a model

encodes syntax and its performance on downstream tasks. Such a

practical finding could help us understand what pre-trained lan-

guage models implicitly learn to perform well in practice. We aim

to tackle this interesting question in future work.

In our experimentations, wemeasure the performance of recover-

ing the full AST through the F1 score. One possible related research
direction would be to analyze which parts of the tree the probe fails

to predict using metrics over constituents. It would provide hints

on where the pre-trained models struggle to capture syntactical

information.

Finally, our work presents several limitations that we plan to

tackle in the future. First, we only consider pre-trained language

models based on the transformer architecture. Nonetheless, our

probe is agnostic of the architecture of themodels and programming

languages. It can be easily adapted to any type of model involving

representation spaces. Then, we choose three common program-

ming languages to analyze. The capacity of our probe to cover a

programming language depends on the possibility of extracting

the vectors ddd,ccc,uuu from the input code. However, the probe is also

language agnostic as it only requires a definition of the language’s

grammar.

7 CONCLUSION AND FUTUREWORK
In this work, we presented a novel probing method, the AST-Probe,
that recovers whole ASTs from hidden representation spaces of

pre-trained language models. The AST-Probe learns a syntactic
subspace S that encodes AST-related syntactic information of the

code. Then, using the geometry of S, we show how the AST-Probe

reconstructs whole ASTs of input code snippets. We apply the AST-

Probe to several models and show that the syntactic subspace exists

in five pre-trained language models. In addition, we show that

these models mostly encode this information in their middle layers.

Finally, we estimated the compactness of the syntactic subspace

and concluded that pre-trained language models use few dimen-

sions of their hidden representation spaces to encode AST-related

information.

In future work, we plan to extend our experiments by includ-

ing more programming languages. We also want to investigate

more pre-trained language models, and different neural network

architectures. Furthermore, we plan to study whether a correlation

exists between how well a model understands the programming

languages’ syntax and its performance on code-related tasks. Fi-

nally, we intend to compare syntactic subspaces before and after

fine-tuning pre-trained language models, for instance, to assess if

the models forget about the syntax.
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