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Abstract

Search engines extract data from relevant sources and make them available to users via queries. A search engine typically
crawls the web to gather data, analyses and indexes it and provides some query mechanism to obtain ranked results. There
exist search engines for websites, images, code, etc., but the specific properties required to build a search engine for models
have not been explored much. In the previous work, we presented MAR, a search engine for models which has been designed
to support a query-by-example mechanism with fast response times and improved precision over simple text search engines.
The goal of MAR is to assist developers in the task of finding relevant models. In this paper, we report new developments
of MAR which are aimed at making it a useful and stable resource for the community. We present the crawling and analysis
architecture with which we have processed about 600,000 models. The indexing process is now incremental and a new index
for keyword-based search has been added. We have also added a web user interface intended to facilitate writing queries and
exploring the results. Finally, we have evaluated the indexing times, the response time and search precision using different
configurations. MAR has currently indexed over 500,000 valid models of different kinds, including Ecore meta-models,

BPMN diagrams, UML models and Petri nets. MAR is available at http://mar-search.org.

Keywords Model repositories - Search engines - Model-driven engineering

1 Introduction

The availability of mechanisms for effective navigation and
retrieval of software models are essential for the success of
the MDE paradigm [16,26], since they have the potential to
foster communities of modellers, improve learning by letting
newcomers explore existing models and to discover high-
quality models which can be reused. There are several model
repositories available [26], some of which offer public mod-
els. For instance, the GenMyModel' cloud modelling service
features a public repository with thousands of available mod-
els, although it does not support any search mechanism.
Source code repositories like GitHub and GitLab also host

! https://www.genmymodel.com/.

Communicated by S. Abrahdo, E. Syriani, H. Sahraoui and J. de Lara.

B<I José Antonio Hernandez Lépez
joseantonio.hernandez6 @um.es

Jests Sanchez Cuadrado
jesusc@um.es

Facultad de Informatica, Universidad de Murcia, Murcia,
Spain

Published online: 27 December 2021

thousands of models of different kinds. However, these ser-
vices do not provide model-specific features to facilitate the
discovery of relevant models.

In this setting, search engines are the proper tool for users
to be able to locate the relevant models for their tasks. For
example, Moogle [42] is a text-based search engine but it does
not include model crawlers and it is discontinued. In [15], a
query-by-example search engine specific for WebML mod-
els is presented. However, it only scales to a few hundreds
of models. Other search approaches are based on OCL-like
queries [11,38] which can be efficient but only select exact
matches. Another aspect is that existing approaches are not
useful in practice since they do not provide access to a high
number of diverse and public models.

Therefore, to date, there has been little success in creat-
ing a generic and efficient search engine specially tailored
to the modelling domain and publicly available. Nowadays,
when a developer faces the task of finding models, she needs
to perform several steps manually. First, she needs to find
out herself potential sources for models (e.g. public model
repositories). Then, for each source, a dedicated query must
be written (or a manual lookup must be done if no query
mechanism is available), and candidate results must be col-
lected. The results are typically not ranked according to its
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relevance with respect to the query. Which is more, when
results come from different sources only manual comparison
is possible. Altogether, searching for models is still an open
problem in the MDE community.

In this paper, we present the evolution of MAR, a search
engine specifically designed for models. MAR consists of
several components, namely crawlers, model analysers, an
indexer, a REST API and a web user interface. The crawlers
and the analysers allow MAR to obtain models from known
sources and prepare them to be consumed by the rest of the
components. The indexer is in charge of organizing the mod-
els to perform fast and precise searches. At the user level,
MAR provides two search modes: keyword based and by-
example. Keyword-based search provides a convenient way
to quickly locate relevant models, but it does not take into
account the structure of models. In the query-by-example
mode, the user creates a model fragment using a regular mod-
elling tool or a dedicated user interface (e.g. textual editor)
and the system compares such fragment against the crawled
models. This allows the search process to take into account
the structure of the models. To perform this task efficiently,
MAR encodes models by computing paths of maximum, con-
figurable length n between objects and attribute values of the
model. These paths are stored in an inverted index [7] (a
map from items to documents containing such item). Thus,
given a query, the system extracts the paths of the query and
access the inverted index to perform the scoring of the rel-
evant models. We have evaluated the precision of MAR for
finding relevant models by automatically deriving queries
using mutation operators, and systematically evaluating the
configuration parameters in order to find out a good trade-
off between precision and the number of considered paths.
Moreover, we evaluate its performance for both indexing and
searching obtaining results that show its practical applicabil-
ity. Finally, MAR has currently indexed more than 500, 000
models from several sources, including Ecore meta-models,
UML models and BPMN models. MAR is freely accessible
at http://mar-search.org.

This work is based on [40], which has been extended as
follows:

— An improved crawling and analysis architecture which
allows us to grow the number of visited models up to
600,000.

— A new indexing process which is faster and it is now
incremental. An indexer for keyword-based search has
also been included.

— The UI and the REST APIs have been greatly improved,
which are hopefully a better resource for the community.

— Extended evaluation, which also includes the indexing
process and an analysis of the effect of the configura-
tion parameters in the search precision and the response
time.
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Organization. Section 2 motivates the need for this work and
presents an overview of our approach and the running exam-
ple, and it introduces the user interface of MAR. Section 3
presents the crawling and analysis architecture. Sections 4
and 5 explain keyword-based and example-based search,
respectively. Section 6 discusses the indexing process. Sec-
tion 7 reports the results of the evaluation. Finally, Sect. 8
discusses the related work and Sect. 9 concludes.

2 Motivation and overview

In this section, we motivate the need for model-specific
search engines through a running example. From this, a set of
challenges that should be tackled is derived. Then, we present
an overview of our approach.

2.1 Motivation

As a running example, let us consider a scenario in which a
developer is interested in creating a DSL which reflects the
form of state machines, and thus, it will include concepts
like state machine, state, transition, etc. The developer is
interested in finding Ecore meta-models which can be useful
either for direct reuse, for opportunistic reuse [33] (copy—
paste reuse) or just for learning and inspiration purposes.

There are several places in which the developer could
try to find meta-models. For instance, the ATL meta-model
zoo contains about 300 meta-models,” but it is only possi-
ble to look up models using the text search facility of the
web browser. Using this search mechanism the user could
find up to five meta-models which seems to represent state
machines. This is shown in the upper image of Fig. 1. How-
ever, the only way to actually decide which one is closer to
what the developer had in mind is to open the meta-models
in Eclipse and inspect them.

Itis also possible to look up meta-models in GitHub. In this
case, a possible approach to find relevant models is by con-
structing a specific search query. For instance, to search for
Ecore meta-models about state machines one would write a
query like: EPackage state machine extension:ecore. This query
will be matched against .ecore files which contain the key-
word EPackage as a hint to find Ecore/XMI formatted files,
plus the state machine keywords. This is shown in the lower
image of Fig. 1. Matched files are not validated (i.e. files
may contain a bad format), duplicates are likely to exist, and
the user can only see the XMI representation of the file. In
addition, the number of results can be relatively large, which
exacerbates the problems mentioned before, since the user
needs to manually process the models.

2 https://web.imt-atlantique.fr/x-info/atlanmod/index.php?
title=Ecore.
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Fig.1 Search approaches for the AtlanMod meta-model zoo (upper part) and GitHub (lower part)

Therefore, there are a number of shortcomings that devel-
opers face when trying to discover relevant models, namely:

Heterogenous model sources. Models may be available
in several locations, which forces the user to remember
all these sources and manually check each one in turn. In
contrast, a search engine provides a single entry point to
discover models regardless of their locations.
Model-specific queries. The unavailability of query mech-
anisms that target models specifically means that the user
needs to adapt the queries to the underlying platform and
to give special interpretation to the results.

Ranking results. Results are typically not sorted using
model-specific similarity criteria. In the best cases, key-
words are used to drive the search. In some cases, there
is no sorting at all (e.g. in the AtlanMod Zo0).

Result inspection. The user would be interested in obtain-
ing information about the model to make a decision about
whether it is relevant or not. This information could be
specific renderings of the model (or parts thereof), a tex-
tual description or simple tags describing the topics of
the model.

Model validation. When searching in source code repos-
itories, there is no guarantee that the obtained models
are valid, which means that the user needs to perform

an additional step of validating the models before using
them.

In this setting, the lack of modelling platform able to
address these issues has been the main driving force in the cre-
ation of MAR. Its design, which is described next, is intended
to address these shortcomings.

2.2 Overview

The design of a search engine for models must consider sev-
eral dimensions [43]. One dimension is whether the search
is meta-model based, in the sense that only models conform-
ing to the meta-model of interest are retrieved. This is useful
when the user wants to focus on a specific type of models and
avoid irrelevant results. However, sometimes the user might
be interested in exploring all types of models as a first approx-
imation to the search. Another dimension is whether the
search engine is generic or specific for a modelling language.
There exist search engines for specific modelling languages
(e.g. UML [31] and WebML [15]), but the diversity of mod-
elling approaches and the emergence of DSLs suggest that
search engines should be generic. Approaches which rely on
exact matching are not adequate in this scenario since the user
is typically interested in obtaining results which are approx-
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imately similar to the query. Thus, the nature of the search
process requires an algorithm to perform inexact matching.
Moreover, a ranking mechanism to sort the results according
to their relevance is needed. The ranking needs to take into
account the similarity of the query with respect to each result.
A search engine requires an indexing mechanism for pro-
cessing and storing the available models in a manner which
is adequate for efficient look up. In addition, a good search
engine should be able to handle large repositories of mod-
els while maintaining a good performance as well as search
precision. Another aspect is how to present the results to the
user. This requires considering the integration with existing
tools and building dedicated web services.

Our design addresses the shortcomings discussed in the
previous section and dimensions described above by includ-
ing the following features, which are depicted in Fig. 2.

— Model-specific queries. The queries created by the user
target the contents of the models indexed by the search
engine. There are two query mechanisms available.

— Keyword-based queries. In this search mode, the
user interacts with the system by typing a few key-
words and obtaining models whose contents match
them (see Sect. 4). This is useful for quick searches
but the results are less precise.

— Query-by-example. In this search mode, the user
interacts with the system by creating an example
model (see Sect. 5). This example model contains ele-
ments that describe the expected results. The system
receives the model to drive the search and to present
a ranked list of results.

— Generic search. The engine is generic in the sense that
it can index and search models when their meta-model
is known. In the case of the query-by-example mode, the
search is meta-model based because it takes into account
the structure given by the meta-model.

— Crawling and indexing. An inverted index is populated
with models crawled from existing software repositories
(such as GitHub and GenMyModel) and datasets (such
as [20]). We use Lucene as our index for keyword-based
search (Sect. 4) and the HBase database as our backend
for example-based queries (Sect. 6).

— Ranking procedure. The results are obtained by access-
ing the index to collect the relevant models among those
available. Each model has a similarity score which is
used to sort the results. The IDE or the web frontend is
responsible for presenting the results in a user-friendly
manner.

— Frontend. The functionality is exposed through a REST
API which can be used directly or through some tool
exposing its capabilities in a user-friendly manner. In par-
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Fig.2 Usage and components of the search engine

ticular, we have implemented a dedicated web interface
(Sect. 2.3).

Metadata and rendering. The system gathers metadata
about the models and analyses them (e.g. how many ele-
ments are there in this model?) in order to provide the user
with additional information to make decisions. Moreover,
model-specific renderings are also provided to facilitate
the inspection of the models.

The availability of a platform of this type would allow
modellers to discover relevant models for their tasks. We
foresee scenarios like the following:

— Model reuse. Users who want to find models useful for
their projects may use the query-by-example facility to
provide a description of the structure that relevant models
need to have in order to obtain them.

— Novel modellers may be interested in navigating models
of certain type to learn from other, possibly more expe-
rience, modellers.

— Researchers who want to easily gather models (with
metadata attached) in order to perform experiments (e.g.
machine learning, analytics, etc.).

— Large enterprises hosting several model repositories
could leverage on a search engine to make their stored
models easily browsable (i.e. having a local installation
of MAR).

2.3 Using MAR in practice

This section provides a summary of the usage of MAR,
intended to give the reader a concrete view of how the features
outlined in the previous section are materialized in practice.
The goal is to facilitate the understanding of the subsequent
sections.

Following with the running example about searching for
models related to state machines, we consider two different,
but complementary use cases.

— Keyword-based search. In this use case, the user wants
to skim available models for state machines by quickly
typing related keywords. For instance, in Fig. 3 (upper
part) the user writes state machine as keywords. This
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Fig.3 Keyboard-based search and query-by-example

type of query is more likely to return irrelevant results
(e.g. the keyword state machine alone may also return
models related to factories which use machines). How-
ever, they are easy to craft and to refine. An additional
advantage is that a keyword-based query can naturally
be used to perform queries across model types because
it is possible to build an efficient common index for all
models. This can be useful to explore for which mod-
elling formalisms there are interesting models available.
For instance, a developer might be interested in models
representing ATMs and she might discover useful UML
state machines and activity diagrams, BPMN models and
even Petri nets that model this domain. She may want to
reuse, e.g. UML models but use BPMN models and Petri
nets as inspiration to complete and refine the UML mod-
els.

— Query-by-example. In this use case, the user has already
in mind the model elements and wants the results to be
relatively close to a proposed example. Thus, in our sys-
tem the user would create a query by crafting an example
model which represents the main characteristics of the
results that the user expects. Fig. 3 (bottom part) shows a
model fragment in which the user indicates that they are
interested in state machines in which Initial and Final
states are modelled as classes. It is worth noting that
this imposes a requirement on the obtained results. This
means that, for instance, models in which the initial and
final states are modelled using an enumeration will have
a low score.

To illustrate the usage of MAR, Fig. 4 shows the web-based
user interface as it is used to perform a query-by-example
search.? In this case, the user selects that it is interested in
crafting an example @ and chooses the type of the model,
Ecore in this case €. Then, a model fragment or example that
servers as query must be provided. This can be accomplished

3 The interface for keyword-based search is similar. It is accessed by
clicking on the Keywords button.

by uploading an XMI file or by using a concrete syntax. For
Ecore, we support Emfatic syntax €.

When the user clicks on the Submit! button, the search
service is invoked, and it returns the list of results. Each
result @ contains the file name (which is a link to the original
file), a description (if available), a set of topics (if available),
statistics (e.g. the number of model elements) and quality
indicators (e.g. quality smells [41]).

Many times the number of results can be large. MAR pro-
vides a facet-based search facility @) with which the user
can filter out models by several characteristics, namely: the
number of quality smells, elements, topics or change the sort
order.

Finally, to facilitate the inspection of models, a rendering
is also available @.

In addition to the user interface, a REST endpoint is also
available. This can be useful to empower modelling tools.
We foresee scenarios in which the search results are used
to provide recommendations in modelling editors (similar to
the approach proposed in [53]). For instance, when the user
is editing a model, MAR could be called in the background
and the results can be used to recommend new elements
to be added to the model, model fragments that could be
copy-pasted, etc. We also envision usages of the REST API
to take advantage of the query facilities in order to imple-
ment approaches to recover the architecture of MDE projects
[24]. For instance, given an artefact which is not explicitly
typed (i.e. its meta-models are not known for some reason),
its actual meta-model could be discovered by performing
queries with inferred versions of its meta-model.

3 Crawling and analysis

This section describes how MAR extracts models from avail-
able resources, and how they are analysed. From a practical
point of view, this is a key component of a search engine,
since it is in charge of obtaining and feeding the data that
will be indexed and searched. Moreover, it poses a number
of technical challenges which are also discussed in this sec-
tion.

Figure 5 shows the architecture that we have built. It has
three main parts: crawlers which collect models, analysers
which take these models and validate, compute statistics and
extract additional metadata from them, and indexers which
are in charge of organizing the models so that they can be
searched in a fast manner. The goal of this architecture is
to automate the crawling and analysis of models as much as
possible and to have components that can be run and evolved
independently.
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3.1 Model sources

The first challenge is the identification of model sources.
Models can be found in different locations, like source code
repositories (e.g. GitHub, GitLab), dedicated model reposi-
tories (e.g. AtlanMod Zoo) or private repositories (e.g. within
an enterprise). There is no standard mechanism for dis-
covering these sources, and therefore this step is manual.
Moreover, many times there is an additional step of iden-
tification of relevant model types along with the required
technology to process them. For instance, to process Archi-
mate models we needed to gather its meta-model* and
integrate it appropriately in our system. We have included in
MAR those sources and types of models that we were already
aware of, or that we have learned through our interaction
with the MDE community. We plan to include new sources

4 https://github.com/archi-contribs/eclipse-update-site.
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and new types of models as we discover them. An important
trait is that our search engine embeds all the knowledge that
we have gathered about model sources and how to process
them, so that it provides an effective means for reusing this
knowledge by simply searching for models.

3.2 Crawling model sources

A search engine is more useful when it is able to provide
access to a greater amount of resources. Crawling is the
process of gathering models from sources such as model
repositories, source code repositories and websites. Hence,
our crawlers are a key element for MAR. An important chal-
lenge is that each repository or source of models has its own
API or protocol for accessing its resources, or even no spe-
cific APl atall (e.g. models listed in plain HTML pages). This
means that there is typically little reusability when imple-
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menting crawlers, and for each type of repository a crawling
strategy is needed.

In our architecture, each crawler accesses the remote
resource and downloads the models, which are stored tem-
porarily on a local disk. In addition, the metadata extracted
for each model is stored in a database. In our design, for
each pair of (repository, meta — model) we have a differ-
ent database. This means that each crawler knows how to
extract a specific type of models (i.e. conforming to some
meta-model) from a given repository.

We have implemented three crawlers: for GitHub, Gen-
MyModel and the AtlanMod zoo. All crawlers maintain a
database to store the metadata associated with each model.
The data model is shown in Fig. 6.

For the AtlanMod meta-model zoo, we have implemented
an HTML crawler which extracts the links to the meta-models
and the associated information (description, topics, etc.).

For GenMyModel, we use its public API° to download
the metadata of the public models it stores. The metadata
contains references to the location of the XMl files. The steps
are as follows:

— Download the complete metadata catalogue, which is
available as a collection of JSON files which can be easily
downloaded from the API endpoint.

— Download models per type using the metadata catalogue
which contain hyperlinks to the actual XMI files.

— Process the metadata files and insert the relevant metadata
into our crawler data model.

For GitHub, we use PyGithub6 to interact with the GitHub
Search API. The GitHub API imposes two main limits which
requires special treatment. First, there is a maximum of
15,000 API Requests per hour (for OAuth users). Moreover, it
isrecommended to pause for a few seconds between searches.
Secondly, it returns up to 1024 results per search. This means,
that we need to add special filtering options to make sure that
each search call always returns fewer than 1024 models. Our

3 https://app.genmymodel.com/api/projects/public.
© https://github.com/PyGithub/PyGithub.

current approach is to add a minimum and maximum size to
the search query, so that in each call we only obtain models
within this range. Then, we move this sliding window adjust-
ing the minimum and maximum sizes dynamically according
to the number of returned results. In practice, these limita-
tions imply that the GitHub crawler may take several days to
perform its job.

Table 1 summarizes the types, number and sources of the
models that we have crawled so far. The highest number
of models corresponds to Ecore, UML and BPMN mod-
els. This is so as they are widely used notations. They have
been obtained from GitHub, GenMyModel and the Atlan-
Mod Zoo. We could also obtain a relatively large number
of models from Archimate and Petri nets (in PNML format)
since they are also well-known types of models. We also
downloaded Sculptor models which is a textual DSL to gen-
erate applications. This shows that our system is not limited
to XMI serialized files. Finally, we converted Simulink mod-
els using Massif [4] from a curated dataset [20].

3.3 Model analysis

The following step in the process is model analysis. It refers
to the task of processing the gathered models, check their
validity and compute additional information such as statistics
and quality measures.

The task of checking the validity of a model is more
involved than it might seem at first sight, notably if one is
interested in a fault-tolerant process. The underlying problem
is that given a crawled model, blindly loading and validating
it may crash the analyser (i.e. out of memory error, bugs in
EME, invalid formats, etc.). Therefore, the implementation
must take this into account and load the model in a separate
process, so that it is possible to capture the situation that the
process dies. If this is the case, the main execution thread can
catch the error and consider the model invalid.

The analysis of a model consists of four main steps, and
the results of the analysis are stored in the data model shown
in Fig. 7.

— Compute the MD5 hash of the file contents and check if it
is duplicated with respect to an already analysed model.
If so, mark its status as duplicated.

— Check if the model can be loaded (e.g. using EMF) and
check its validity (e.g. using EMF validators). If the
model is valid, mark as such so that it can be later used
in the indexing process.

— Compute statistics about the model. The most basic
measure is the number of model elements, but we also
compute other specific metrics for some model types like
Ecore, UML, etc.
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Table 1 Summary of the type of models crawled by MAR as December 23, 2021

Source Crawled Duplicates Failed Indexed Observations
Ecore GitHub 67,322 46,199 341 20,782 Based on the standard Ecore meta-model
GenMyModel 3987 3 27 3957
AtlanMod 304 1 4 299
UML GitHub 53,082 7282 1699 44,101 Based on the Eclipse UML implementation
GenMyModel 352,216 143 23,836 328,237
BPMN GenMyModel 21,285 0 200 21,085 Based on the EMF BPMN?2 meta-model
Archimate GitHub 496 77 106 313 Based on the Archi meta-model
PNML GitHub 3291 1576 1044 671 Based on PNML framework
Sculptor GitHub 188 88 0 88 An application generator based on Xtext
RDS GenMyModel 91,411 108 515 90,788 Refers to entity/relationship diagrams
Meta-model semi-automatically inferred
Simulink Dataset [20] 200 0 200 Converted to EMF using Massif [4]
Total - 593,582 55,477 27,972 510,321 -
https://www.omg.org/spec/BPMN/2.0/
https://github.com/archi-contribs/eclipse-update-site
https://pnml.lip6.fr/
EcoreStats adding some configuration options. Implementation-wise the

Stats
*
Model >— > numElems: int

packages: int

I

classes: int
id: String
origin: String N
@ —> Smell
name: String X
url: String name: String

R . ocurrences: int
license: String

creation: Date
update: Date
topics: String[*]

Fig.7 Data model of the analyser

— Perform a quality analysis. We currently analyse potential
smells for Ecore models. For this, we have implemented
the smells presented in [41].

Table 1 summarizes the number of duplicated, failed and
actually indexed files.

3.4 Supporting different types of models

In MAR, we aim at supporting different types of models
crawled from different sources. This is a challenge since it is
not possible to analyse and process all types of models using
a single approach. For instance, the code to load and analyse
PNML files is different from the one used to load and analyse
Ecore models. Moreover, the computation of metrics, smells
and visualizations is specific to each kind of models.

To partially overcome this issue, the design of MAR is
modular and extensible, in the sense that support for new
model types can be added just by creating new modules and
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addition of a new model type to MAR involves the following
steps:

— Identify which modelling framework is needed to load the
models. For instance, most models serialized as XMI can
be loaded with EMF if its Ecore meta-model is known.
Sometimes, the models are serialized using a textual syn-
tax, for instance using Xtext. In this case, the loading
phase requires invoking the corresponding Xtext facili-
ties.

— A new analyser must be created, which is in charge of
loading the model, invoke the corresponding validator (if
available) or implement new validation code. Moreover,
the analyser may include the logic to compute metrics and
smells. The results are stored in the data model shown in
Fig. 7.

— The analyser must be registered in a global registry which
contains pairs of (model type, factory object). Given a
certain model, its model type is looked up in the registry
and the factory object instantiates the validator.

— To support new types of visualizations, a similar approach
is used. Given a model type, a visualizer must be regis-
tered. A visualizer takes a model, loads it and generates
an image. We currently target PlantUML, but other
approaches are possible, like integrating the facilities pro-
vided by Picto [39].

In general, adding a new model type is relatively straight-
forward if it is based on EMF or an EMF-based framework
(like Xtext) because MAR already provides facilities to imple-
ment the above steps.
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3.5 Indexers

The models that have been deemed valid by the correspond-
ing analyser are fed into the indexers in order to store them
in a form suitable for fast query resolutions. We have two
indexers: for keyword-based queries and for example-based
queries. These search modes are explained in the two follow-
ing sections.

4 Keyword-based queries

MAR provides a keyword-based search mode in which the
user just types a set of keywords and the system returns
models that contain these input keywords. To implement this
functionality, we rely on existing techniques related to full-
text search, which has been widely studied in the literature
[59]. In our context, we assume that the string attributes of
the models that we want to expose in the search engine act
as keywords. Thus, we consider each model to be a docu-
ment consisting of a list of keywords. The expectation is that
a model contains names which reflects its intention and the
user can reach relevant models by devising keywords similar
to those appearing in the models.

Implementation-wise, we use Apache Lucene [2] to
implement this functionality, since it provides facilities for
pre-processing documents, to index the documents and to
perform the keyword-based search. To integrate the crawled
models with Lucene, each model goes through the following
pipeline:

1. Term extraction. We extract all the string attributes
(e.g. ENamedElement.name in Ecore) from the model. For
instance, the text document for the model shown in Fig. 3
would be:

StateMachine states State name
InitialState FinalState

2. Camel case tokenization. Each camel case term is
divided into lowercase subterms. For example, the pre-
vious terms are transformed into:

state machine states state name
initial state final state

3. Word pre-processing. Full-text search engines, like
Lucene, typically perform a pre-processing step which
include techniques like stop word removal (i.e. remove
common tokens like fo and the) and stemming to reduce
inflectional forms to a common base form (e.g. transform-
ing a plural word like states into its singular form szate).
Using the Porter Stemming Algorithm [49], we obtain:

state machin state state name
initi state final state

4. Storing of the bag of terms. The list of subterms is
transformed into pairs (ferm, freq) where freq is the
frequency of rerm in the list. This step is done internally
by Lucene. For example:

(state, 5)
(initi, 1)

(machin, 1) (name,1l)

(final, 1)

Finally, this set of pairs are stored in the Lucene inverted
index.

Moreover, in each document we also include metadata
about the corresponding model obtained in the crawling pro-
cess, such as the description and topics. Then, the documents
are indexed in an inverted index managed by Lucene.

Regarding the search process, given a set of keywords as
query, Lucene accesses the inverted index and it ranks the
models according to their scores with respect to the query (it
uses the Okapi BM25 [51,59] scoring function).

A feature of our keyword-based index is that all models are
indexed together. This means that a query like state machine
may return models of different types like Ecore meta-models
representing state machines, but also, e.g. UML models in
which the keywords may appear. Then, the user could use
the UI filters to select the concrete type of models.

The main disadvantage of keyword-based queries is that
the structure of the models is not taken into account. Thus,
a query like state transition could not distinguish whether
the user is interested in models containing classes named
State or Transition, or if they refer to references like states
or transitions. Thus, one way to improve the precision of the
search is by providing model fragments as queries so that the
structure of the models can be taken into account.

5 Query-by-example

MAR provides support for another search mode called query-
by-example. In this case, the user creates a small example
model as the query and the system looks up models which
have parts similar to this example. In this section, we will
explain how MAR performs approximate structural matching
to determine relevant models. This is achieved in three steps:

1. Transforming each model into a multigraph.

2. Extracting paths from the graph.

3. Comparing the paths extracted from the query and the
paths extracted from each model in the repository.
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5.1 Graph construction

In our approach we transform models into a labelled multi-
graph with the following form:

G=(V,E, fAuy, uy), (ed)
where:

— V is the set of vertices, E is the set of edges and f :
E — V x V is a function which defines the source and
the target of each vertex.

- ,u%, : V. — ({attribute,class} is a vertex labelling func-
tion that indicates if a vertex represents an attribute value
or the class name of an object.

- ,u%, :V —> Ly where Ly = L4 U L. This is a vertex
labelling function that maps vertices to a finite vocabulary
which has two components:

— L 4 corresponds to the set of attribute values. If v € V
is an attribute then u%,(v) € Ly.

— L¢ corresponds to the set of names of the different
classes. If v € V is a class then /L%/ (v) € Lc.

- ,qu : E —> Lgwhere LE = LRULg. Thisis an edge
labelling function which has two components.

— Lpg corresponds to the set of names of the differ-
ent references. An edge whose label belongs to this
vocabulary connects two classes.

— L g corresponds to the set of names of the differ-
ent attributes. An edge whose label belongs to this
vocabulary connects a class vertex and an attribute
vertex.

The procedure followed to transform a model into a multi-
graph is shown in Algorithm 1. This procedure receives a
model as input, its meta-model and the set of all meta-classes
(C), references (R) and attributes (A) that will be taken into
account (i.e. those model elements whose meta-types are
not in these sets are filtered out). The output is a directed
multigraph whose label languages L g, L g and L ¢ are deter-
mined by R, A and C, respectively. In the output multigraph
we can distinguish between two type of nodes: nodes labelled
with class in 1 (we call them object class nodes) and nodes
labelled with attribute in 1 (we call them object attribute
nodes). For instance, the model in Fig. 3 is transformed into
the graph shown in Fig. 8 using Algorithm 1. In this example,
we consider as input for the algorithm:

‘R ={all references}

A = {ENamedElement.name, EClass.abstract,
EReference.containment}

C = { ENamedElement }
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Data: input model, meta-model, C, R and A
Result: labelled multigraph
1 while not all model objects are visited do

read an object o from the input model;
3 if 0 does not have a associated class node and the meta-class
of o belongs to C or it inherits from a meta-class of C then
4 add node v (associated with o) labelled with class and the
name of the meta-class;

5 forall the attribute of o do

6 if attribute belongs to A then

7 add node w (associated with the attribute value);

8 label w with attribute and the value of the attribute;

9 add edge (v, w) labelled with the name of the
attribute;

10 add edge (w, v) labelled with the name of the
attribute;

11

12 end

13 forall the references of o to another object o' do

14 if if the reference belongs to R then

15 if if o’ has not been visited then

16 add node u (associated with object 0’), labelled it

with class and its meta-class;

17 add (v, u) labelled with the reference name (u is the
node associated with o’);

18

19 end

20 mark o as visited;

21 end

Algorithm 1: Procedure that transforms a model into a
labelled multigraph.

StateMachine
o

eContainingClass

<
eﬂ%?
£

es,,
Pery, s
ePackage \ eClassifiers Yoo

[ EClass ] EClass ][EDawtaType]
3 act e

e i iihsn

Fig.8 Multigraph obtained from the model in Fig. 3. Object class nodes
are depicted as rounded rectangles, while attribute nodes are depicted
as ovals

This graph is the interface of MAR with the different
modelling technologies, that is, MAR can process any model
that can be transformed to this graph. Up to now, we have
implemented the algorithm for EMF, but we foresee other
implementations for other types of models.

5.2 Path extraction

Once the graph associated with a model has been created, we
perform a path extraction process. The underlying idea is to
use paths and subpaths found in the graph as the means to
compare the example query against the models in the repos-
itory. In this context, the term bag of paths (Bo P) refers to
the multiset of paths that have been extracted from a multi-
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graph. A path that belongs to a BoP can have one of the
following forms:

— Path of null length: (/L%/ (v)) or
— Path of length greater than zero:

(1} (v1), u% (1), .oy 1 (Vn—1), e (en—1), u3 (n)),

withn > 2.

This definition of BoP establishes the form of the ele-
ments that should belong to this multiset and does not enforce
which paths must be computed. Therefore, extraction crite-
ria must be defined depending on the application domain. We
follow the same criteria as our previous work [40] in which
only paths of these types are considered:

— All paths of zero length for objects with no attributes. In
Fig. 8, the only object without attributes is the EPack-
age object (because we did not establish the package
name). Therefore, the only example of this type of path
is ((EPackage))

— All paths of unit length (paths of length one) between
attribute values and its associated object class. In Fig. 8,
examples of this type of paths are ( Cstates), name,

Eaerenc) ) ( e o (€6 ) (> o
> , et.

— All simple paths with length less or equal than a threshold
(paths of length 3 or 4 are typical enough to encode the
model structure, as determined empirically in Sect. 7)
between attributes and between attributes and objects
without attributes. In Fig. 8, examples of this type of paths

are ( , name, (EReference), containment, )
, ( , name, [ECﬁs], eStructuralFeatures,
,rﬁé, ) s (EPackage, eClassifiers,
(EClas) e, nitalState"> ), < StateMaching —, i,

— —
EClass), eStructuralFeatures, (EReference), eType,, name,
) , etc.

The underlying idea is that paths of zero and unit length
encode the data of an object (its internal state). For instance,
the path ( (State>, name, ) means that the model has an
EClass whose name is State. On the other hand, paths of length
greater than one encode the model structure. For instance, the

path ( < StateMachine >, name, (EClass), eStructuralFeatures,
(EReference)name, ) means that the query expects

the existence of a class named StateMachine with a reference
named states.

5.3 Scoring

Given a query ¢ (a model) and a repository of models M,
our goal is to compare each model of the repository with the
query. To achieve this, all the models in M are transformed
into a set of multigraphs and then paths are extracted obtain-
ing a set of bags of paths, BoPs = {BoPy,..., BoP,}.
The query g follows the same pipeline and it is transformed
into BoP,. To perform the comparison between Bo P, and
each bag BoP; of BoPs, that is, to compute the score
r (Bqu, BOP[), we will use the adapted version of the scor-
ing function Okapi BM25 [51,59] used in [40]:

3 co(@) G+ Dey (i) log ( ntl ) ,
4 | _pplBOP] df (@)
ey

where 1 < i < n, c,(g) is the number of times that a path
w appears in a bag BoP,, ¢, (i) is the number of times that
a path w appears in a bag BoP;, df (w) is the number of
bags in BoPs which have that path, avdl is the average of
the number of paths in all the BoPs in the repository and
z € [0, +00), b € [0, 1] are hyperparameters. This function
takes BoP; € BoPs and BoP,, and returns a similarity score
(the higher, the better). We have chosen this scoring function
because it has three useful properties for our scenario:

— Ittakes into account the paths that are in both bag of paths
(@ box of Eq. (1)).

— It takes into account the paths that are very common in
the bags of the entire repository (€ box of Eq. (1)).

— It penalizes models which have a large size (€ box of
Eq. (1)) to prevent the effect caused by such models hav-
ing significantly more matches. This is controlled by the
hyperparameter b. If b — 1, larger models have more
penalization. We take b = 0.75 as default value.

Itis important to remark that the hyperparameter z controls
how quickly an increase in the path occurrence frequency
results in path frequency saturation. The bigger z is, the
slower saturation we will have. We take z = 0.1 as default
value.

Therefore, to perform a query, for each element in BoPs
its score with respect to Bo P, is computed. Then, the repos-
itory is sorted according to the computed scores and the top
k models are retrieved (the k£ models with highest score).
While this is a straightforward approach, it is not efficient.
Instead, an index structure is needed in order to make the
scoring step scalable and efficient. Next section presents the
implementation of this structure.
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6 Indexing models for query-by-example

In a typical text retrieval scenario, an indexer organizes the
documents in an appropriate data structure for providing a
fast response to the queries. In our case, which is a model
retrieval scenario, the indexer organizes models instead of
documents. As in every search engine, the indexing module
is crucial when we look for scalability and the management
of large repositories.

6.1 Inverted index

The main data structure used by the indexer is the inverted
index [59]. In a text retrieval context, the inverted index con-
sists of a large array in which each row is associated with a
word in the global vocabulary and points to a list of docu-
ments that contain this word.

In our context, instead of words we have paths and instead
of documents we have models. This is a challenge that we
have to deal with since it causes two problems:

— Large amount of paths per query. In contrast to a text
retrieval scenario in which a query is composed by a
small number of keywords, in query-by-example, a small
model/query can be composed by an order of hundreds
of different paths.

— Huge inverted index. In a text retrieval scenario, the num-
ber of words in the vocabulary has an order of hundred of
thousands, whereas, in model retrieval, we have an order
of millions different paths.

These two issues translate in practice into a lot of accesses
per query to a huge inverted index. Therefore, the design of
an appropriate and more complex structure beyond the basic
inverted index is needed. The main ingredients that we use
to tackle this are:

— The inverted index is built over HBase [1]. This database
has a distributed nature. Therefore, the table that will be
associated with the inverted index is split into chunks and
they may be distributed over the nodes of a cluster. This
design decision makes the system scalable with respect
to the size of the index.

— Special HBase schema. We have designed an HBase
schema to accommodate an inverted index particularly
oriented to resolve path-based queries. The underlying
idea is to split the paths in two parts. Doing this, the
number of accesses per query to the inverted index is
reduced. This is explained next.
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6.2 Inverted index over HBase

We use Apache HBase [1,30] to implement the inverted
index. HBase is a sparse, distributed, persistent, multidimen-
sional, sorted, map database inspired by Google BigTable
[19]. The HBase data model consists of tables, and each table
has rows identified by row keys, each row has some columns
(qualifiers) and each column belongs to a column family and
has an associated value. A value can have one or multiple
versions identified by a timestamp. Therefore, given a table,
a particular value has 4 dimensions:

(Row, Column Family, Column Qualifier, Timestamp)

— Value

Due to the design of HBase, the Column Family and
Timestamp dimensions should not have a large number of
distinct values (i.e. three or four distinct values). On the other
hand, there is no restriction in the Row and Column Qualifier
dimensions.

Regarding reading operations, HBase provides two oper-
ations: scan (iterate over all rows that satisfy a filter) and get
(random access by key to a particular row). With respect to
writing, the main operation is put, to insert a new value given
its dimensions (row, column family and column qualifier).
This operation does not overwrite if multiple versions are
allowed.

Designing an HBase schema for an inverted index can be
relatively straightforward: each path is a row key and the
models that contain this path are columns whose qualifier
is the model identifier. However, this approach suffers from
one of the problems that we have explained previously: lots
of accesses (get) per query. Therefore, in order to avoid this
problem, we use the schema presented in [40]. Each path is
split into two parts: the prefix and the rest. The prefix is used
as row key whereas the rest is used as column qualifier. The
split point of the path depends on whether it starts with an
attribute node (the prefix is the first sub-path of unit length)
or an object class node (the prefix is the first node). The value
associated with the column is a serialized map which asso-
ciates the identifier of the models which have this path with
a tuple composed by the number of times the path appears
in the models and the total number of paths of the models.
This tuple is used by the system to compute the scores in an
efficient manner. Therefore, this schema has the following
form:

(Prefix, Column Family, Rest, Timestamp) —>

Map ModellD — (number of times, model size)

Thus, now a path is the concatenation of the prefix (row
id) and the rest (column qualifier). The column family is
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Fig.9 HBase schema of the inverted index

constant for all the paths in a table, and the number of different
timestamps is limited by the number of versions allowed in
the column family.

This schema is illustrated in Fig. 9. As an example we use
three paths:

1. ( Gstate), name,)
2. ( @ name, abstract -)
3. ( , rTé, EClass), eStructuralFeatures, (EAttribute),

rame, Crame> )

>

ame,

For instance, the second path ( Cstate), name, (EClass)
abstract, ) is split into prefix (state, name, EClass (row
key) and rest , abstract, false) (column qualifier). The first and
third paths have the same common prefix and thus share the
same row key. The column qualifiers associated with the row
key are the rest parts, that is, ), , abstract, false) and eStruc-
turalFeature, EAttribute, name, name). Each column qualifier has
an associated value, which is a map whose keys are the model
identifiers (idx where x is a number) and whose values are the
pairs [a, b] where a is the number of times the path appears
in the idx model and b is total number of paths of the idx
model. Moreover, in this example, the paths have two ver-
sions associated.

Altogether, this approach reduces the number of accesses
to the index because in a given model there are many paths
with the same prefix, and thus with one access it is possible
to retrieve all of them.

Incremental mode

Insertion »Insertion >Insertion > Merge >lInsertion >Insertion >Insertion » Merge

Fig. 10 Possible sequence of insertion and merge operations in the
incremental mode. In this case, the number of distinct versions that the
column family allows is three

6.3 Indexing process

Given a large repository of models of the same type (i.e.
conforms to the same meta-model), indexing is the process
of building the HBase table that represents the inverted index
and follows the schema previously explained. Our search
engine has two indexing modes:

— Batch: once the index is constructed, adding more models
to the index is not allowed. Instead, if new models are
discovered, the whole index needs to be deleted and all
the models are indexed together. To create an index in
batch mode, we process each model in the repository in
turn, transform each model into a graph, compute paths,
group paths by prefix and invoke HBase put operations
to fill the index table.

— Incremental: adding more models to the index is allowed.
We focus on this mode in the rest of the section.

In order to implement the incremental mode the indexing
process is composed by two subprocesses:

— Insertion: it adds new models to the inverted index. In
particular, this procedure receives as input a set of models,
obtains its bags of paths and stores them in a HBase table.
A detailed explanation is given in Sect 6.3.1.

— Merge: After a sequence of insertion operation has been
performed, the cells in the HBase table associated with
the inverted index may have a set of versions. The merge
procedure is in charge of merging all these versions of a
cell into a single one. A detailed explanation is given in
Sect 6.3.2.

6.3.1 Insertion

This subprocess is in charge of adding new models to the
inverted index. Itis implemented by a Spark [58] script which
does the following (see Fig. 11):

1. Read and distribute all the models (this corresponds to
label @ in Fig. 11). Given a repository of n models, they
are read and loaded in memory.

2. Obtain graphs, extract and process the paths (this corre-
sponds to label @ in Fig. 11). The set of loaded models
{my,...,m,} is transformed into the set {Gi, ..., G,}
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mp @> G @; BoP; > (p1,(1,(ap,1,61))) | (P2, (L, (apy.1,1))) p1= {11 (ap,1,b1),22 = (apy 22,22), ...} 1 — prefix;, rest;
ma > Gy » BoPy > (95, (2, (ap; 2, b2))) | (03, (2, (apy,2,02))) P2 ={1: (apy1,01),3: (apy3,b3),...}
ms > Gs > BoP3 —> (p2, (3, (ap,.3,3))) | (p7, (3, (ap; 3,b3)))

Repository my, > G, » BoP,, —> (4, (1, (apyn,00))) | (05, (n, (aps 0, b0)))

of models

Fig. 11 Insertion subprocess

(prefix, , rest;, timestamp, , map, )

(prefix,, resty, timestamp,, map, )

1110

(prefix;, rests, timestamps,, map;)

Fig. 12 Merge subprocess

using Algorithm 1 (label @ in Fig. 11). After that, the
path extraction process is performed getting the set of
bags of paths {BoP1, ..., BoP,} (label @ in Fig. 11).

3. Emit key-value pairs. The key is the processed path and
the value is a tuple (model id, statistics) (label €). For each
BoP and for each distinct path that belongs to this BoP
we emit a pair key-value with the form (p, (id, (a, b)))
where p is the path, id is the model identifier that the
BoP is extracted from, a is the number of times the path
appears in the BoP and b is total number of paths of the
BoP. Here, p is the key and (id, (a, b)) is the value.

4. Group by key and merge the list of values (from the key-
value pairs) into a serialized map (label @). We group the
pairs emitted in the previous step according to the path
(key) and the list of values associated with this key is
transformed into a map of the form {id; : (ai, b1), id> :
(az, by), ...}. For instance, as we can observe in Fig. 11,
the map associated with the p, path has the elements
1: (ap,,1,b1) and 3 : (ap, 3, b3) since BoP; and BoP;
contain the path p».

5. Split the paths and store them in the HBase table (label
©). Each path is split into a prefix and the rest according
to the HBase schema presented in Sect. 6.2 and it is stored
in the inverted index table with its associated map using
the HBase put operation.

This step is similar in both the batch and the incremental
modes. The only difference is that in incremental mode a
timestamp is attached to each inserted value to allow multiple
versions. This is possible because HBase allows multiple
versions in column families. Therefore, when a put operation
is executed and the key already exists the last value is not
removed, but a new version is added.
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(prefix}, rest;) — [maps, map;,...] |—> (prefix],rest;) — map

(prefixj, resty) — [map;, mapg,...] |—> (prefixy,rest)) — map)

((prefix; , rest ), map; )
((prefix,, resty ), map,)
((prefixs, rests), maps)
(prefix;, rest;, timestamp,,, map;,) —>»{ ((prefix;,rest;), map;)

(preﬁx;d,rest;,) —» [map;, mapy,...] |—>| (prefix,,rest},) — mapj,

6.3.2 Merge

HBase is able to resolve read operations in the presence of
versions. However, the number of versions of a column fam-
ily is limited by an upper bound in order to control the size
of the HFile (the distributed file that stores the column fam-
ily). Therefore, it is necessary to perform a merge operation
before the number of versions grows too large (i.e. in our
implementation we set the maximum number of versions to
four).

According to our HBase schema, a value associated with
a version in a column will be a serialized map of models that
contains a path (the path is given by the concatenation of row
key and the column qualifier). Therefore, these versions can
be merged into a single one (i.e. these maps can be merged
into a single one). The merge subprocess is a Spark [58] script
which does the following (Fig. 12):

1. Read the table associated with the inverted index and
extract all tuples (prefix, rest, timestamp, map) (label @
in Fig. 12).

2. Ignore timestamp dimension and emit pairs key-value
(label @ in Fig. 12). Here, the key is (prefix, rest) and
the value is the serialized map.

3. Group by the key, that is, coordinates (prefix, rest). This
corresponds to step € in Fig. 12 in which (prefix;, rest;)
are the distinct keys and each [map] is the list of maps
associated with a key.

4. Merge the list of maps associated with akey (prefix’, rest’)
and generate a new map. This step corresponds to the label
O inFig. 12. Here, (prefix}, rest;) are the distinct keys and
map); are the merged map.
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id43: [1,268], ...}
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Fig. 13 HBase table obtained after the application of the merge oper-
ation in the table represented by Fig. 9

5. Store the result in a new HBase table (put operation) and
delete the old one. This corresponds to the label @ in
Fig. 12.

For example, if the merge operation is applied to the
HBase table represented in Fig. 9, the table represented by
Fig. 13 will be obtained. Looking at these two figures, we
can appreciate that maps associated with the same path but
with different timestamps/versions have been merged into a
single map.

To summarize, the batch mode is adequate when the man-
aged repository is immutable (or very unlikely to change) or
when it is small and it is very fast to re-index everything after
achange. Instead, the incremental one is interesting when the
repository may change (this is the case of GitHub or Gen-
MyModel) or when it is very large and it is better to index
in chunks of models to avoid exhausting the available heap
memory. We evaluate the indexing time in both models in the
following section.

7 Evaluation

In this section, we evaluate MAR from three perspectives.
First, we evaluate the indexing procedure in terms of its
performance, comparing batch mode and incremental mode.
Second, we evaluate the search precision and finally we eval-
uate the query response time. Moreover, the source code of
MAR is available at http://github.com/mar-platform/mar so

that others can install it locally and perform experiments with
it.

7.1 Indexing performance

As the number of crawled models grows, the performance
of the indexer module becomes increasingly important. We
have measured the time that the incremental and batch modes
take, and compared them. The experiments have been run in
an AMD Ryzen 7 3700X, 4.4Ghz, 8 core, 16 threads with 32
GB of RAM. The Spark process is run locally with a driver
memory of 8GB.

To evaluate the effect of the repository size in the indexing
time, we use the non-incremental mode and split a repository
of 17.000 Ecore models in 17 “incremental” batches, that is,
a batch with the first 1000 models, a second batch with the
first 2000 models and a last batch with the complete 17.000
models. We have first shuffled the models to have a uni-
form distribution of the different sizes. We index each batch,
cleaning the database index between each run, and record the
indexing time. Fig. 14 shows the results. As the number of
models increases, the indexing times grow linearly. The time
taken to index the full repository is about 12 minutes.

To evaluate the incremental mode we use the same reposi-
tory of 17.000 Ecore models, but this time, we create batches
of 1000 models each. The experiment consists of indexing
each batch in turn, and after 4 insertions (5 when the index is
empty) we invoke the merge operation. We record the time
of both the insertion and merge operations. Figure 15 shows
the results. The insertion times are in a range of about 40-75
s per batch (the variations due to some models being much
larger than others). The merge operation is more costly and
it grows linearly with the size of the index.

Comparing the total indexing time, the batch mode takes
724 s (~ 12 min), whereas the incremental mode takes 1410 s
(~ 23 min) when adding up all the insertion and merge times.
Thus, there is a penalty when using the incremental mode due
to the merge operation. However, given that merge is only
done from time to time, it pays off to use the incremental
mode for large collections of models that require updates.

7.2 Search precision

We are interested in analysing the ability of MAR to match
and rank in the first positions relevant models, as well as the
effect of the different parameters on this task (i.e. the path
length and the kind of meta-model elements considered in
the graph construction). The evaluation of a search engine
is known to be difficult since the notion of result relevance
is subjective [59]. To address this issue, we follow the same
idea proposed in [40], that is, we simulate a user who has in
mind a concrete model by taking a model from the repository
and deriving its associated query using mutation operators.

@ Springer
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Models

Fig. 14 Non-incremental mode performance. The x-axis indicates the
number of models that the process has to index and the y-axis the time
in seconds. MAR scales smoothly as the size of the index increases
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Fig.15 Incremental mode performance. The x-axis indicates the stages
and the y-axis the time in seconds. In case of merge operations, MAR
scales smoothly as the size of the index increases. In case of insertions,
the time used is constant since it only depends on the number of models
considered and their size

This query is a shrunk version of the original model which
includes some structural and naming changes, which is called
query mutant. The underlying idea is that, for each generated
query mutant, we already know that the mutated model is
precisely the model that we expect the search to return in the
first position. This type of search in which there is only one
relevant model for each query is called known item search
[59].

We use the repository of 17.690 Ecore meta-models used
in [40] and we reuse the mutation operators already imple-
mented for this previous work. We describe the operators here
for the sake of completeness. For each meta-model, we apply
in turn the mutation operators summarized in Table 2. First,
we identify a potential root class for the meta-model and we
keep all classes within a given “radius” (i.e. the number of
reference or supertype/subtype relationships which needs to
be traversed to reach a class from the root), and the rest are
removed. All EPackage elements are renamed to avoid any
naming bias. From this, we apply mutants to remove some
elements (mutations 2—6). Next, mutation #7 is intended to
make the query more general by removing elements whose
name is very specific of this meta-model and it is almost never
used in other meta-models (in text retrieval terms the element
name has a low document frequency). Finally, to implement
mutation #8 we have applied clustering (k-means), based on
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Table 2 Mutations operators used to simulate queries

Mutant Description

1 Extract connected subset ~ Select a root element and pick
classes reachable via references or
subtype/supertype relationships, up

to a given length.

Remove a random inheritance link
(up to 20%).

Remove classes, but prioritize those
which are farther from the root ele-
ment (up to 30%)

2 Remove inheritance

3 Remove leaf classes

Remove references Remove a random reference (up to

30%).

Remove random enumerations or
literals (50%).

Remove a random attribute (up to
30%).

Remove elements whose name is
“rare”.

5 Remove enumeration
6 Remove attributes
7 Remove low-df classes

8  Rename from cluster Replace a name by another name
corresponding to element belonging
to the same meta-model cluster (up

to 30% of names).

the names of the elements of the meta-models, in order to
group meta-models that belong to the same domain. In this
way, this mutant attempts to apply meaningful renamings by
picking up names from other meta-models within the same
cluster. We apply this process with different radius configu-
rations (5, 6 and 7) and we discard mutants with less than 3
classes or with less references than |classes|/2. Using this
strategy we generate 1595 queries.

As a baseline to compare with, we use a pure text search
engine. The full repository is translated to text documents
which contain the names of each meta-model (i.e. property
ENamedElement.name). These documents are indexed and we
associate the original meta-model to the document. Similarly,
we generate the text counterparts of the mutant queries. On
the other hand, we run MAR with 6 different configurations.
In particular, two dimensions will be used: the maximum
path length and the attributes considered (that is, the set .4
in Algorithm 1). We will consider the path lengths 2, 3 and
4 and these two versions of .A:

— Aan = {ENamedElement.name, EClass.abstract, EReference.
containment, ETypedElement.upperBound, ETypedElement.
lowerBound}

— Apnames = {ENamedElement.name}

The sets R and C are fixed to {all references} and
{ENamedElement}, respectively. Therefore, a total of six con-
figurations will be taken into account in the evaluation
(Table 3). These six settings are chosen in order to study the
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Table 3 The six configurations considered

2 3 4
Aan All-2 All-3 All-4
Anames Names-2 Names-3 Names-4

Table 4 Precision evaluation results

MRR Differences in MRR

Text search 0.668 -

Names-2 0.734 < .001 /+0.066
Names-3 0.742 < .001/+0.074
Names-4 0.757 < .001 /+0.089
All-2 0.742 < .001/+0.089
All-3 0.752 < .001/+0.084
All-4 0.702 < .001/+0.034

effect of the path length (model structure considered) and the
set A (information of the model considered) in the precision.
The evaluation procedure is as follows. Each query mutant
has associated the original meta-model which it comes from.
Therefore, for each query, we perform the search and retrieve
the ranked list of results. We look up the original meta-model
in the ranked list and annotate its position r. Then, the recip-
rocal rank (1/r) is computed. Ideally, the best precision is
achieved when the original meta-model is in the first posi-
tion. Once all queries have been resolved, we summarize the
set of reciprocal ranks using the average obtaining the mean
reciprocal rank (MRR). To see if the differences between
MAR and the baseline are statistically significant we use the ¢
test. The results are shown in Table 4. The first column con-
tains the MRR of each one of the configurations of MAR and
the text search engine (baseline). The second one contains
the differences in the mean and the p value when comparing
with the baseline (for example, the cell < .001/+0.066 asso-
ciated with Names-2 means that the difference in MRR when
comparing with Text search is 0.734 — 0.668 = +0.066 and
it is statistically significant since the p value is < .001).
When only names are considered (Names-x where x =
2,3, 4), the greater the length the better the precision. This
is caused by the fact that increasing the path length produces
an increase in the amount of model structure considered. In
particular, in Names-2 the majority of paths are of the form
of ( (n), namé, ) (that is, the bags of paths
consider information of the form this model has a named ele-
ment whose name is n). Names-3 considers all information
that Names-2 takes and adds interesting paths that encode
facts of the type this EClass of name nl has this reference of

name n2 (e.g. ( < StateMachine >, name, (EClass), eStruct Feat,,
(EReference), name, Cstates>) in Fig. 8) or his EClass of

name nl has this attribute of name n2 ( < (State), hame,
EClass), eStruct.Feat., (EAttribute), name, ) in Fig. 8).

Finally, Names-4 adds paths of the type this EClass of name
nl has a reference connected with an EClass of name n2

( ( , name, (EClass), eStruct.Feat., (EReference),
eType, , name,) in Fig. 8).

On the other hand, when more attributes are considered
(All-x where x = 2, 3, 4), increasing the path length does not
always improve the precision, since the configuration with
length 4 is the one that achieves the worst results. In this
case, an increase in the path length provokes an increase in
the number of noise and useless paths. In Fig. 8, an example of

this type of noisy paths is ( < StateMachine >, name, (EClass),
ePackage, (EPackage), eClassifier, ECIass,abstract,) . This

path encodes the fact that the user is interested in models
with an EClass whose name is StateMachine and belongs to
an EPackage that contains a non-abstract EClass. The infor-
mation that this path encodes does not help in the search and
produces noise which may confuse the search engine.

From this evaluation we can conclude that using some
model structure in the search is beneficial in terms of preci-
sion. As we have shown MAR, outperforms the text search in
all configurations (all differences are positive and are statis-
tically significant with p value < 0.001). In order to choose
a proper configuration we need to find trade-off between pre-
cision and efficiency since increasing the size of .4 and the
maximum length causes an increase in the size of the index
and, consequently, the time used to resolve a particular query.
The effect on the response time is studied in the next section.

The main threat to validity in this experiment is that the
derived mutants might not represent the queries that an actual
user would create. We have manually checked that they are
reasonably adequate, but an experiment with queries from
real users is required to confirm the results. Regarding the
selection of the configuration parameters, they are only valid
for Ecore models. For other type of models, a similar analysis
is required in order to select a proper configuration. Never-
theless, for models in which names play an important role
(e.g. UML, BPMN) we expect configurations which rely on
name attributes to perform similarly well.

7.3 Query response time

To evaluate the performance of MAR we have used all mutant
queries used in the search precision evaluation. We want to
measure the query response time using each one of the six
configurations introduced in the previous section. Thus, for
each configuration, we have indexed the 17690 Ecore models
and for each query mutant, we perform the search and mea-
sure the response time. Moreover, to evaluate the effect of the
query size we count the number of packages, classes, struc-
tural features and enumerations and we classify the queries in
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Table 5 Statistics of the mutants set used in the evaluation

EPackage EClass EAttribute EReference Total
Min Median Mean Max Min Median Mean Max Min Median Mean Max Min Median Mean Max Queries
Small 1 1 1.2 8 3 5 5.3 11 0 2 2.4 11 2 4 3.8 11 337
Medium 1 1 1.6 18 3 13 134 35 0 8 9.8 45 2 10 10.8 29 848
Large 1 1 3.6 46 3 27 3725 193 1 29 357 168 2 24 309 116 410
Table 6 Mean and max statistics of the query response times (in sec- Table 7 Mean and max statistics of the number of paths
ds
onds) Small Medium Large
Small Medium Large Mean  Max Mean Max Mean Max
Mean Max Mean Max Mean Max
All-2 66.0 195 178.7 892 437.1 1578
All-2 0.13 025 024 051 035 182 A3 2382 916 789.1 4337  2001.0 8600
All-3 0.29 102 0.66 207 097 363 All4 619.7 4997 28490 21282 103400 48803
All-4 0.98 2.75 2.36 6.60 3.47 9.18 Names-2  22.6 94 65.5 284 172.0 552
Names-2 003 009 006 016 009 108 = Nymes.3 916 544 3661 2030 10594 5069
Names-3  0.05 021 011 041 019 164 Names-4 2845 3687 1679.0 13108 77240 37474
Names-4 0.08 0.41 0.28 1.41 0.66 3.85
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Fig.16 Boxplot of the number of paths per query. The x-axis represents
the configurations considered, the y-axis the number of paths of a query

three types: small (less than 20 elements), medium (between
20 and 70) and large (more than 70). Table 5 shows some
details about the contents of the queries.

Figure 17 shows for each configuration and for each query
size the query response time as a set of boxplots. Table 6
shows the mean and max. statistics of the query response
times per configuration and query size.

Increasing the path length causes an increase in the num-
ber of distinct paths. On the other hand, adding elements to
the set .4 implies generating bigger multigraphs (since more
nodes are considered). Consequently, increasing the set A
also causes an increase in the number of distinct paths. This
fact has an impact on the size of the index, the number of
accesses to the inverted index and the path extraction pro-
cess. In Fig. 16, the distribution of paths per query size and
MAR configuration is shown and Table 7 contains the mean
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Fig. 17 Boxplot of the query response time. The x-axis represents the
configurations considered, the y-axis the time in seconds and the colour
the size of the queries

and max statistics of the number of paths of the queries per
configuration and query type. It can be observed that a change
in the MAR configuration of the form conf-x — conf-(x +1)
(where conf is All or Names) and Names-x — All-x (with
x =1, 2 or 3) causes an increase in the number of paths for
each one of the three sizes.

Therefore, taking account the results in Tables 4 and 6
a reasonable choice to consider part of the model structure,
have a good precision and still have a fast response time is
Names-4.

Finally, it is worth mentioning that category small cor-
responds to queries that users would normally perform. In
this case, the average response time is less than a second in
all configurations (Table 6). On the other hand, for medium
and large mutants the average query response time is near 2
and 3 s, respectively, in the most demanding configuration
(All-4), which can be considered a good result since there
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are queries with up to 193 classes. This suggests that MAR
could be applicable in scenarios like model clone detection.

8 Related work

In this section, we review works related to our proposal. We
organize these works in five categories: model encoding tech-
niques, model repositories, mining and analysis of model
repositories, search engines and model clone detection.

8.1 Model encoding techniques

The concept of BoP, which is a key element of our query-
by-example approach, is inspired by the notion of bag of
path-context defined in Code2vec [6]. In this paper, the
authors study the transformation of code snippets into con-
tinuous distributed vectors by using a neural network with
an attention mechanism whose input is a multiset of paths
extracted from the AST of a code snippet.

SAMOS is a platform for model analytics. It is used in
[8] for clustering and in [ 10] for meta-model clone detection.
SAMOS’s approach is very close to ours since both transform
models into graphs and extract some paths (the authors call
them n-grams). However, there are some differences between
MAR and SAMOS. First, our graph is different as we con-
sider single attributes as independent nodes, and therefore
the extracted paths are different. And second, SAMOS is not
designed to perform a search since it uses similarity metrics
which are not thought to perform a fast search.

AURORA [45] extracts tokens from Ecore models and
uses a neural network to classify them in domains (e.g.
state machines, database, bibliography, etc.). These tokens
are treated as words and the input of the neural network is
a TF-IDF vector. In AURORA, paths are encoded by con-
catenating tokens. MEMOCNN [46] can be considered the
evolution of AURORA. It uses an encoding schema simi-
lar to AURORA but MEMOCNN transforms meta-models
into images and they are used to feed a convolutional neural
network that performs the classification.

Claris6é and Cabot propose the use of graph kernels for
clustering models [21]. The general idea is to transform mod-
els into graphs and perform machine learning methods by
using graph kernels [47] as similarity measure between graph
models.

8.2 Model repositories

The study performed by Di Rocco [26] shows that the search
facilities provided by existing model repositories are typi-
cally keyword based, tag based or there is no search facility
at all. Our aim with MAR is to offer a search platform able to

provide a search layer on top of third-party repositories from
which models can be extracted.

MDEForge is a collaborative modelling platform [13]
intended to foster “modelling as a service” by providing facil-
ities like model storage, search, clustering, workspaces, etc.
It is based on a megamodel to keep track of the relation-
ships between the stored modelling artefacts. One goal of
MDEForge is to remove the need of installing desktop-based
tooling and to enable collaboration between users. As such,
the services offered by MDEForge are focused on its regis-
tered users and their resources. In contrast, MAR is intended
to offer a simpler and more open search service.

Img2UML [35] is a repository of UML models obtained
by collecting images of UML diagrams by searching for
Google images. These images are converted to XMl files, and
there is a search system based on querying names of specific
properties (e.g. class names). The use of this repository in a
teaching environment has been studied in [36], showing its
usefulness for improving students’ designs. MAR could be
used a similar setting, using its example-based facilities to
improve the search process.

GenMyModel is a cloud service which provides online
editors to create different types of models and stores thou-
sands of public models [3]. Our crawlers target GenMy-
Model, using the REST API it offers in order to provide
search capabilities for its models.

ReMoDD is a repository of MDE artefacts of different
nature, which is available through a web-based interface [29].
It is intended to host case studies, rather than individual files.
In addition, it does not include specific search facilities.

Hawk provides an architecture to index models [11], typ-
ically for private projects and it can be queried with OCL.
This means that the query result will only contain models that
satisfy the OCL expression. In contrast, the main use case of
MAR is inexact matching, which means that the resulting
models do not necessarily match the complete query.

8.3 Mining and analysis of model repositories

There are some works devoted to crawl and analyse models.
ModelMine [50] is a tool to mine models from GitHub, along
with additional information such as versioning. It is similar
to our approach for crawling GitHub, except that our system
uses file sizes instead of dates for filtering results. Another
difference, is that it does not provide specific capabilities
for validating the retrieved models. Similarly, Restmule is a
tool to help in the creation of REST APIs to mine data from
public repositories [52]. We plan to use it and compare its
performance and reliability against our system.

The work by Barriga et al. proposes a tool-chain to
analyse repositories of Ecore models [12]. To prove its use-
fulness, they analyse a repository of 2420 ecore models. Their
approach is similar to the analysis module of MAR. However,
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Table 8 Summary of search engine for models approaches adapted and extended from [14]

Query format Search type Models Index Crawler Megamodel aware
[42] MOOGLE Text Text search Any Yes No No
[11] HAWK OCL-like language Exact results Any Yes No Partial
[15] Text version Text search Text search WebML Yes No No
[15] Structure-based version Query-by-example Structure based WebML No No No
[31] Query-by-example Structure based UML Yes No No
[38] MoScript OCL-like language Exact results Any No No Yes
[14] Text search Text search Any Yes No Yes
[28] Query-by-example Structure based BPMN No No No
[57] Query-by-example Structure based BPMN Yes No No
[18] Query-by-example Structure based Petri nets No No No
MAR Query-by-example Structure based Any Yes Yes No

our validators can handle models of different types (not only
Ecore meta-models), they are fault-tolerant and we have used
them to analyse an order of magnitude more models.

A statistical analysis is carried out in repositories of ~ 450
ecore models by Di Rocco et al. [25]. In particular, the
authors studied relations between structural features of the
meta-models (for instance, correlation between featureless
meta-classes and number of meta-classes with a supertype)
and their distributions (for instance, the distribution of iso-
lated classes). On the other hand, a similar analysis is carried
out by the same authors in [27] in the context of ATL trans-
formations together with the source and target meta-models.

SAMOS is used to analyse and cluster the S.P.L.O.T.
repository [9]. First, they try to get a high-level overview
of the repository by considering large clusters. Then, they
carry out a more fine-grained clustering to discover model
clones or duplicates.

8.4 Search engines

A number of search engines for models have been proposed.
However, as far as we know, there is no one widely used. In
Table 8, the proposed search engines are shown along with
an analysis of their features.

A search engine of WebML models is presented by Bis-
limovskain [15]. It supports two types of queries: text queries
and query-by-example. This search engine uses an inverted
index so the response is fast. On the other hand, when an
example is given as a query, the similarity between mod-
els is computed by using a variation of the Ax algorithm.
Therefore, the query’s response is slow since an iteration of
the full repository is needed to obtain the final ranked list.
On the other hand, the work by Gomes [31] focuses on the
retrieval of UML models using the combination of WordNet
and Case-Based Reasoning.
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MOOGLE [42] is a generic search engine that performs
text search and the user can specify the type of the desired
model element to be returned. MOOGLE uses the Apache
Lucene query syntax and Apache SOLR as the backend
search engine. In [14], a similar approach to MOOGLE is
proposed with some new features like megamodel aware-
ness (consideration of relations among different kinds of
artefacts).

MoScript is proposed in [38], a DSL for querying and
manipulating model repositories. This approach is model-
independent, but the user has to type complex OCL-like
queries that only retrieve exact models, not a ranking list
of models.

The work by Dijkman [28] investigates the application
of graph matching algorithms to ranking BPMN given an
example as the query. After that, in [57], the greedy algo-
rithm (studied in [28]) is improved obtaining a procedure of
computing similarity between BPMN graphs ten times faster.
On the other hand, Cao [18] proposes to use the Hungarian
algorithm to query similar Petri nets.

In the work by Kalnina [34], a tool for finding model frag-
ments in a DSL tool is proposed. The fragments are expressed
using concrete syntax and a graph matching procedure is used
as the search mechanism.

Genetic algorithms with structural and syntactic metrics
were used to compare two meta-models in the work by
Kessentini [37]. However, this approach is not intended to
be fast since it uses genetic algorithms.

8.5 Model clone detection

It is worth including this topic in the related work section
because it can be seen as a type of approximate match-
ing. Model clone detection is a relatively new topic [10]
and much research has been devoted to deal with chal-
lenges such as scalability (models can be large graphs [22]),
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tool-specific representations, internal identifiers, and abstract
versus concrete syntaxes [10,54]. However, model clone
detection approaches have not been applied to search in large-
scale repositories, since these techniques are more focussed
on pairwise model matching. In our case, we have a scor-
ing algorithm that is global in the sense that model paths are
stored together in the index. This makes our approach more
scalable in terms of the size of the repository.

In[10], SAMOS is applied to meta-model clone detection.
A study of the UML clones is carried out in [54] and [55]
where a tool to detect clones (called MQjqpe ) is presented and
a description of clone types in UML is provided.

Exas encodes a graph model into a vector to perform
approximate matching [44,48]. This technique has also been
applied to detect model transformation clones [56].

On the other hand, clone detectors in Simulink models
have been studied in the literature. For instance, an approach
of clone detection in data flow languages is presented in [23]
which is based on graph theory and it is applied on model
clone detection in Simulink. SIMONE (an extension of text-
based tool NICAD) is presented in [5] to detect clones in
Simulink models.

9 Conclusions

In this paper, we have presented MAR, a search engine specif-
ically designed for models. We have explained its crawler
and analysis architecture, with which we have processed
600,000 models so far. We have implemented indexers for
both keyword-based and example-based queries. For the lat-
ter, we report on the indexer design which includes both batch
and incremental modes. We have evaluated the performance
of MAR in terms of indexing and search time, obtaining good
results. Moreover, we have evaluated the search precision
using mutation operators to simulate user queries. At the
user level, MAR provides a web interface to perform queries
and inspect the results.

Regarding its practical usage, MAR is able to crawl mod-
els in several sources and it has currently indexed more
than 500,000 unique models of different kinds, including
Ecore meta-models, BPMN diagrams and UML models. This
makes it aunique system in the MDE ecosystem, that we hope
it is useful for the community. MAR is available at http://mar-
search.org.

As future work, we plan to keep discovering new model
sources and indexing more models. We want to include feed-
back mechanisms for users to rate the results of the queries
and use this feedback to improve the system. Moreover, we
would like to address some limitations on the expressiveness
of the queries. For instance, it would be interesting to allow
encoding incomplete models (e.g. a UML class whose name
is a wildcard) and to consider synonyms (e.g. a search for

employee also returns models related to workers). Another
line of work is the application of machine learning tech-
niques that may help us automate some tasks like generating
descriptive tags, automatically classifying models in order
to improve faceted search and to consider quality features in
the ranking algorithm by using a learning to rank approach
[17,32].
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