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Generating structurally realistic models with
deep autoregressive networks

José Antonio Hernández López and Jesús Sánchez Cuadrado

Abstract—Model generators are important tools in model-based systems engineering to automate the creation of software models for
tasks like testing and benchmarking. Previous works have established four properties that a generator should satisfy: consistency,
diversity, scalability, and structural realism. Although several generators have been proposed, none of them is focused on realism. As a
result, automatically generated models are typically simple and appear synthetic. This work proposes a new architecture for model
generators which is specifically designed to be structurally realistic. Given a dataset consisting of several models deemed as real
models, this type of generators is able to produce new models which are structurally similar to the models in the dataset, but are
fundamentally novel models. Our implementation, named MODELMIME (M2), is based on a deep autoregressive model which
combines a Graph Neural Network with a Recurrent Neural Network. We decompose each model into a sequence of edit operations,
and the neural network is trained in the task of predicting the next edit operation given a partial model. At inference time, the system
produces new models by sampling edit operations and iteratively completing the model. We have evaluated M2 with respect to three
state-of-the-art generators, showing that 1) our generator outperforms the others in terms of the structurally realistic property 2) the
models generated by M2 are most of the time consistent, 3) the diversity of the generated models is at least the same as the real ones
and, 4) the generation process is scalable once the generator is trained.

Index Terms—Model generators, Realistic models, Graph neural networks, Recurrent neural networks, Generative models.

✦

1 INTRODUCTION

THE automated generation of models is a key approach
in many areas of software and system engineering such

as testing and benchmarking of graph databases [1], [2],
creation of complex test stubs in the object-oriented field [1],
[3] or the synthesis of prototypical test contexts in the
assurance of smart cyber-physical systems [1], [4], [5].

The tools that automatically generate models are called
model generators. A model generator receives as input a set
of specifications describing how the output models should
be, and it is in charge of producing models that satisfy these
constraints as much as possible. Typically, the inputs include
the meta-model that the output model will conform to, the
size of the output models, OCL or graph constraints, etc.
Several generators have been proposed in the last years,
which can be classified as SAT-solver based generators [6],
[7], [8], [9], generators based on constructive formalisms like
grammars [10], [11], search-based model generators [1], [12],
[13], [14] and purely random generators [15].

In this context, Varró et al. [5] established four properties
that a generator should satisfy: 1) the generator must be
consistent to satisfy a set of domain constraints (e.g. specified
with OCL [16] constraints or graph patterns [17]); 2) the
generator must be diverse, that is, the generated models
should contain a wide variety of shapes [18]; 3) the genera-
tor should be scalable with respect to the size of the output
model and 4) the generator must be realistic, that is, the gen-
erated models cannot be distinguished from real ones made
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by humans. In particular, a generator is structurally realistic
if the set of generated models cannot be distinguished from
the real ones just by looking at the typed graph structure
(i.e., ignoring the attribute values). Consistency and diversity
are desirable in a functional testing scenario, whereas scala-
bility and realism are essential for benchmarking and stress
testing [1]. For example, realism is an important property for
testing in domains like autonomous cars [12], in which test
models are intended to represent real-life scenarios [19], [20],
but unrealistic test cases are less useful because they may
not happen in the real world. Thus, realistic test scenarios
are more faithful to reality and they are preferred when
testing this type of systems. Moreover, test beds might not
be shared due to intellectual property issues and the ability
to automatically generate structurally similar models can be
a key feature to facilitate testing tasks.

A limitation of current model generators is that none of
them is focused on making the generated models look real.
This means that the generated models are typically simple
and synthetic and not similar to the ones made by humans.
On the other hand, satisfying the four properties at once
is a challenge. For instance, SAT-solver based generators
like Alloy [6], [7] or Formula [9] are consistent but they
are neither diverse [18], scalable [1] nor realistic [21]. The
VIATRA generator [1] is consistent, diverse and scalable but
it is not realistic [22].

This work proposes a new breed of model generators
that is focused on satisfying the realistic property. Given a
dataset consisting of several models deemed as real models,
this type of generators is able to produce new models which
share similar characteristics, but are fundamentally novel
models. The key idea is that models can be broken down
into a sequence of edit operations. Thus, we can train a
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deep autoregressive model [23], [24] to predict the next edit
operation using as input a partial model [25]. Then, we use
the trained model to incrementally build fresh models by
iteratively inferring the next edit operation. To this end,
we have designed an architecture based on combining a
Graph Neural Network (GNN), for selecting edit opera-
tions, and a Recurrent Neural Network for selecting the
nodes for the selected edit operation. We have evaluated
our implementation with respect to the structurally realistic
property, using the Maximum Mean Discrepancy [26], [27]
(a very well-known metric used to measure the quality of
generative models) over the graph metrics proposed in [21].
We show that our generator outperforms three state of the
art generators in this property. Regarding the other three
properties (consistency, diversity and scalability), we show
that more than the 85% of generated models are consistent,
the diversity of the generated models is at least the same as
the real ones and the generation process is scalable once the
generator is trained.

Altogether, the contributions of this work are the follow-
ing:

1) The use of the notion of edit operation to decompose a
model into a sequence of operations which represent
the structure of the model and can be learned. This al-
lows us to transform the model generation problem into
sequence generation that can be tackled by a generative
model.

2) A generator, named MODELMIME (M2), that is focused
on producing realistic models that are structurally simi-
lar to a given dataset. To the best of our knowledge, this
is the first model generator that is specifically designed
to satisfy this property.

3) We replicate the metrics for consistency and diversity
proposed by previous works [5], [18] to compare our
generator with three state-of-the-art generators. More-
over, we propose the use of the Maximum Mean Dis-
crepancy (MMD) metric to assess the realism of each
model generator.

Organization. Section 2 gives a brief explanation of the
technical background that underlies our approach. Section 3
presents the neural architecture that we have designed.
Section 4 describes the experiments that we have carried
out to compare our generator with three state-of-the-art
generators. Finally, Section 5 discusses the related work and
Sect. 6 concludes.

2 BACKGROUND

This section presents the background of our approach. As a
running example, let us suppose that we want to generate
Yakindu Statecharts [28], which is a widely used formalism
in model-based engineering. The meta-model is shown in
Fig. 1a and Fig. 1b shows an example model. The example
has 8 objects: a Statechart with one Region depicted as a
rectangle, an Entry (black circle) to represent the initial
state, two States represented as rounded rectangles and three
Transitions.

2.1 Models as graphs
Models can be seen as graphs [22], [29] since a one-to-one
function between models and graphs can be constructed

by considering the multigraph of their abstract syntaxes.
Thus, given a model that conforms to a meta-model, one can
construct a labeled multigraph (ignoring attribute values in
this case) by doing the following:

• Each object of the model is mapped to a vertex and it is
labeled with the name of the meta-class that the object
belongs to.

• Each reference in the model is associated to an edge,
which is labeled with the name of the reference.

For instance, when we apply this procedure to the model
in Fig. 1b, the graph in Fig. 2 is obtained. It is important to
note that, we do not consider attributes since we are focused
in the structurally realistic property (see Sect. 2.2.1).

2.2 Model generators
A model generator is an artifact that receives a set of condi-
tions {c1, . . . , cn} and attempts to output models that satisfy
these conditions. We can see generators as implicitly defin-
ing a conditional distribution over models P (M |c1, . . . , cn)
since they are not deterministic. That is, once the input
conditions {c1, . . . , cn} are established, we can run the
generator and sample a model M . For example, let us
consider the VIATRA generator [1]. This generator receives
as input conditions a meta-model M, a set of constraints
Ψ and the number of objects o that the output model will
have. According to the previous definition, it defines a
distribution PVIATRA(M |o,M,Ψ).

2.2.1 Properties of model generators
Varró et al. [5] presented the Graph Model Generation
Challenge in which four properties that a generator should
satisfy are established, namely:

• Consistency: A generator is consistent if 1) the gener-
ated models conform to a given meta-model M and
2) respect a given set of domain constraints Ψ. For
example, for our running example (Fig. 1) we define
two constraints (extracted from [5]):

1) There is no Transition whose target state is an Entry.
2) A Region must contain one and only one Entry.

• Diversity: A generator is diverse if the generated mod-
els contain a wide variety of shapes. The diversity for
a concrete model is measured by using the internal
diversity [18].

• Scalability: A generator is scalable if it is able to gener-
ate models with a significant amount of objects within
a reasonable period of time.

• Realism: A generator is realistic if the generated models
cannot be distinguished from real ones. In particular, a
generator is structurally realistic if the set of generated
models cannot be distinguished from the real ones by
just looking at the typed graph structure (i.e., ignoring
the attribute values) [5], [12].

Our generator is focused on the structurally realistic
property which is a challenge itself [12]. For example, Fig. 3a
shows one real Yakindu model extracted from GitHub.
Fig. 3b depicts a model generated by the VIATRA generator
which cannot be considered realistic when compared to real
ones. Finally, Fig. 3c shows a model generated by M2 which
does ressemble real ones. In the rest of the paper we describe
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(a) Excerpt of the Yakindu meta-model, extracted from [5] (b) Example model

Fig. 1: The Yakindu Statecharts meta-model and one example model

Fig. 2: Multigraph associated to the model in Fig. 1b. To
avoid too many edges, the opposite references (source /
outgoingTransitions and target / incomingTransitions) are rep-
resented by arrows with two heads. In particular, source /
outgoingTransitions is represented by a dashed arrow and
target / incomingTransitions by a dotted one.

our technique to achieve this result. On the other hand, in
these examples, the models do not have concrete values
for the attributes. Building a fully realistic generator also
involves dealing with attribute values, but to tackle this task
we need, first of all, to have models with a realistic structure.

2.3 Models as a sequence of edit operations
In our approach, we use a sequential generative model [24],
which is based on adding nodes and edges sequentially
as a way to synthesize models. This means that we need
model construction operations. To this end, we use the idea
of edit operation [25]. An edit operation is an abstraction that
represents an operation that a modeler performs when she is
building a model. For our case, we focus only on operations
that add elements to the model which we define with three
components:

• A unique identifier to refer to the type of the edit
operation univocally.

• An edit graph. It represents graph of objects that will
be added to the model under construction.

• A set of edit connections. They are the edges that will
connect the edit graph with the model under construc-
tion. Each edit connection requires the selection of a
node in the model under construction to link the edit
graph with the model.

Let us consider the meta-model of our running example
(Fig. 1b) and let us define a set of edit operations composed

(a) Model extracted from
GitHub

(b) Model generated using
VIATRA generator

(c) Model generated using
M2

Fig. 3: Example of real and synthetic models.

by add a Transition, add a State and add a Region with an Entry.
Fig. 4 shows these three edit operations. The arrows ended
by a connector (i.e., a semi-circle ��) are the edit connections
and the rest of the graph is the edit graph. In the case of add a
Transition the edit graph is composed by a node and the edit
connections are the references source / outgoingTransitions
and target / incomingTransitions. The edit graph of add a State
is also composed by a single node and the edit connection is
the reference vertices. Finally, the edit graph of add a Region
with an Entry is composed by two nodes (a Region and and
Entry) connected by the reference vertices whereas, the edit
connection is the reference regions.

The application of an edit operation is carried out by
selecting the nodes in the model under construction that will
be connected to the edit graph through the edit connections.
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(a) Add a Transition (b) Add a State

(c) Add a Region with an Entry

Fig. 4: Illustrative edit operations for the running example.

(a) Add a Vertex
named C, where C can
be: State, FinalState,
Choice, Exit, Entry

(b) Add a Transition

(c) Add a Region (d) Add target

Fig. 5: All atomic operations extracted from the Yakindu
meta-model in Fig. 1a.

The number of nodes to be selected is equal to the number
of connectors ( ��). For example, Fig. 6 shows how add a
Transition is applied:

1) Select the first connector 1 i.e., the source of the Tran-
sition (Entry e1).

2) Select second connector 2 i.e., the target of the Transi-
tion (State s1).

3) Add the edit graph to the model under construction i.e.,
a transition that connects the selected nodes.

Therefore, in our approach we iteratively construct mod-
els by selecting and applying edit operations as explained.

2.4 Definining model operations
To train a model generator for a given meta-model with
its constraints, we need to define the corresponding edit
operations. There are two types of edit operations:

• Atomic edit operations. An atomic operation corresponds
to the minimal set of changes needed to extend the
current model with a new object or a new reference
between two objects. Fig. 5 shows the atomic operations
derived from the meta-model in Fig. 1a. There are eight
atomic edit operations: one for each type of Vertex, add

a Transtion, add a Region and add target. These atomic
operation can be automatically derived from the meta-
model by traversing all references. If a reference is
containment then an edit operation of type “add object”
is defined for each potential concrete class referenced
(similar to the additional node creation rule of [30]). For
instance, Fig. 5a shows that from the vertices reference
five different edit operations are derived. This type
of atomic operation, not only creates the object, but
it also places the object in its containment reference.
On the other hand, if a reference is non-containment, an
operation like Fig. 5d is derived (similar to the additional
edge creation rule of [30]).

• Complex edit operations. These operations cannot be
directly extracted from the meta-model and have to
be defined manually. They are defined by combining
several atomic edit operations. For instance, the edit
operations presented in Fig. 4a (obtained by combining
the atomic edit operations of Figs. 5b 5d) and Fig. 4c
(combination of Figs. 5a and 5c) are complex edit oper-
ations. This type of edit operations helps our generator
to produce more consistent models and to improve its
scalability.

Therefore, from the perspective of a user who wants to
use M2 with a specific meta-model, the definition of the
edit operations is a pre-requisite. First, all possible atomic
edit operations must be defined to ensure that the generator
can “cover” the complete meta-model. This can be done
automatically [30]. At this point it is possible to directly
use M2, but it is advisable to use domain knowledge to
define several complex edit operations to help M2 produce
better models. For instance, the edit operation depicted
in Fig. 4c ensures that all Regions will have one Entry,
which is a domain constraint. Thus, there are two possible
configurations to run our generator (Sect. 3): 1) only atomic
edit operations (automatically generated) and 2) atomic edit
operations plus user-defined complex edit operations. This
set of edit operations is used by M2 both in the training and
inference phase.

3 APPROACH

Our generator relies on a neural model which guides the
generation process. Fig. 7 shows a high-level view. This
neural model is trained to produce models that are similar to
an input dataset. Its architecture combines a Graph Neural
Network (GNN) and a Gated Recurrent Unit (GRU). The
GNN [31] is used for selecting edit operations (i.e., the
identifier of the edit operation), whereas the GRU [32] is
needed for selecting which nodes in the current model are
connected to an edit operation.

Our approach is composed of two phases that involve
the neural model:

1) Training phase. The generator receives the definition
of the edit operations associated to the meta-model
and a dataset of models conforming to such meta-
model. Each model of the dataset is broken down into
a sequence of edit operations and the neural network is
trained to predict the next edit operation given a partial
model.
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Fig. 6: Application of add a Transition to a model under construction. Step 1: select the node for the source reference. Step 2:
select the node for the target reference. Step 3: Add the edit graph with the connecting nodes.

Meta-model

Dataset Decomposition in edit
operations

Definition of edit
operations

Sequences of
edit operations

Training Neural model

Constraints

respect

expected to respect

optional

structurally similar to

Inference

Initial partial model

Traning phase Inference phase

Fig. 7: Proposed generator.

2) Inference phase. Once the network is trained, it takes
an initial partial model as input and samples an edit
operation. Then, this edit operation is applied to grow
the model. The process is repeated sequentially until
the generator orders to stop or the size of generated
model reaches a given threshold. The provided initial
model can be empty. In this case, our generator will
use as seed model a root object (e.g., an object of type
Statechart in our running example). Also it is possible
to input a more complex model that establishes the
minimal structure of the generated models.

To use our generator the user has to provide a meta-
model and a dataset of models conforming to this meta-
model. The atomic edit operations can be derived from
the meta-model and the user can optionally provide more
complex edit operations. The neural model will produce
new models that will be similar in structure to the dataset by
applying edit operations in sequence. Precisely, which edit
operation to apply next is what the neural model learns.
It is important to note that our neural model does not
receive domain constraints as input. Instead, the models in
the training dataset must respect the constraints. The goal is
that the generator learns the structure of the training models
and thus avoids creating models which do not satisfy the
constraints. In other words, as the models of the dataset
respect a set of constraints, we expect that the generated
models will respect them as well.

In the following, we will describe in detail the architec-
ture of the proposed neural model, the inference phase and
the training procedure.

3.1 Neural model
Given a dataset of real models {M1, . . . ,Mn}, we assume
that they come from a distribution over models Qreal. Thus,
we propose to learn a distribution Pθ(M) = P (M |θ) that
is close to the real distribution Qreal. Here θ represents the
parameters (weights) of the neural network.

The neural model tackles the model generation as a
sequential process. In each step, a partial model is extended
by applying an edit operation:

M1, . . . ,MT = M with M i+1 = ei(M
i) for all i = 1, . . . , T−1

where ei is an edit operation. Therefore, our neural model is
used to sample an edit operation ei ∼ Pθ(ei|M i, . . . ,M1),
and then ei is applied to M i to get M i+1. The sequence of
pairs given by a partial model and applied edit operation,

r = ((M1, e1), . . . , (M
T−1, eT−1))

is called decoding route [33]. It contains all the information
required to reconstruct a complete model.

We will accept the Markov assumption. Therefore, this
equality holds: Pθ(ei|M i, . . . ,M1) = Pθ(ei|M i) and our
neural model receives the last partial graph as input. To
sample an edit operation ei from Pθ(ei|M i), the network
performs the following steps:

1) Edit operation selection (fedit), that is, select an edit
operation from the set of defined edit operations. It is
composed by two subtasks:

a) Identifier selection (fid), that is, select the edit oper-
ation identifier that will be applied.
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b) Connectors completion (f j
conn). We have to select the

nodes in the model under construction that will be
connected to the edit graph associated to the selected
edit operation.

2) Termination (fend). It establishes if we have to end the
generation process.

Each step requires its own neural architecture, which are
explained next.

3.1.1 Architecture for identifier selection
This neural module (fid) is in charge of the inference of
an edit operation. Fig. 8 shows the architecture. Given a
partial model M i, each of the nodes are passed through an
embedding layer (Enode) to obtain the initial embeddings
( 1 in Fig. 8). Then, a GNN of L layers is applied to these
embeddings to obtain a contextualized embedding for each
node, that is, an embedding that has information about its
graph neighborhoods according to the input model (label
2 shows that the GNN transforms the initial embeddings

for each node into the contextualized embeddings). We
consider the GNN layer proposed in [34] since it takes
into account the node and edge labels. Thus, in this neural
module, the node embeddings of each node in each layer l
are computed as follows:

h0
v = Enode(v) ∈ Rd

hl
v = ReLU

W 1
l h

l−1
v +

∑
r∈R

∑
w∈Nr(v)

1

|Nr(v)|
W r

l h
l−1
w

 ∈ Rd

where Enode is the embedding layer of nodes (initial embed-
ding), R is the set of reference types defined in the meta-
model (edge types when seen as a graph) and Nr(v) is
the neighborhood of v restricted to r hops. Since we apply
L layers, we denote the final node embedding matrix as
X = HL ∈ Mn×d where n = |V | and d is the hidden
dimension. To represent the full input graph as a vector
we use the average of all node embeddings as aggregation
operation (label 3 in Fig. 8):

hMi = AVG(X) ∈ Rd

Finally, we pass this vector through two linear layers
and apply a softmax activation function in order to assign a
probability to each operation identifier (label 4 ):

fid(M
i) = SOFTMAX(W 2

edit · ReLU(W 1
edit · hMi))

Given a partial model, we use it as input to fid(M
i) to

sample the identifier of the next edit operation according to
the output probabilities. In this example, add a Transition is
the most likely edit operation.

3.1.2 Architecture for connectors completion
This neural module is in charge of choosing already existing
nodes in order to assign them to the connectors of the edit
operation sampled in the previous step. In the example, the
add a Transition operation needs to select two objects for the
source and target references. The architecture to perform this
task is depicted in Fig. 9 and an it relies on a GRU [32]. The
rationale behind choosing a GRU as the core of this module

is the fact that the set of defined edit operations could have
different number connectors.

To be able to compute the node for the first connector,
the GRU needs two pieces of information: the identifier
of the selected edit operation and a vector representing
the current partial model. We obtain this information from
the previous module, which is hMi (label a in Fig. 8, the
vector summarizing the model) and add a Transition (label
b in Fig. 8, the selected edit operation). Then, if the edit

operation has two or more connectors, we use the node
embedding associated to the node selected by the GRU
(which is computed by the fid module, e.g., hL

e1) as the next
input for the GRU.

More formally, the recurrent network is initialized (label
1 ) with the vector associated with the input model (hMi )

and the sampled edit operation which is passed through an
embedding layer. To sample the node for the first connector,
we apply the GRU just one step, as follows:

hGRU
0 = hMi

x0 = Eid(idei)

hGRU
1 = GRU(hGRU

0 , x0)

To obtain the concrete node, we concatenate the output
hidden state to each node embedding of the partial model
(label 2 ). We pass this concatenation through two linear
layers and we apply a softmax (label 3 ) to get the prob-
ability for each node of being selected for the connector.
Formally, f1

conn computes the probability of the first node as
follows:

f1
conn(M

i) = SOFTMAX
(
W 2

conReLU
(
W 1

con · CONCAT(X,hGRU
1 )

))
When the edit operation needs to be completed with

more nodes (i.e., has two or more connectors) we use as
input the embedding of the previously selected node, that
is, when j > 1 (j represents the connector we are filling) we
have the following (label 4 ):

xj = Embedding of the node sampled with f j−1
conn .

hGRU
j = GRU(hGRU

j−1 , xj)

f j
conn(M

i) = SOFTMAX
(
W 2

conReLU
(
W 1

con · CONCAT(X,hGRU
j )

))
In this example, the node sampled for the source connec-

tor of the Transition is e1, the node sampled for the target
connector is s1.

In this way, the task of applying an edit operation, fedit, is
defined as the concatenation of fid and f j

conn. Using the edit
graph associated with the selected edit operation and the
selected nodes, we update the current partial model. In this
example, we have completed the current model with a new
Transition node (the edit graph of the selected operation add
a Transition) with connections to Entry e1 and the State s1.
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Fig. 8: Architecture of fid. (1) embedding layer to obtain the initial embeddings per node, (2) GNN to compute a contextual
embedding per node, (3) aggregation of individual node embeddings to obtain a graph-level embedding and (4) softmax
activation layer to assign a probability to each defined edit operation. (a) the graph-level embedding is used as input by
the other two neural modules (i.e., f j

conn and fend) and (b) the selected edit operation is used as input by the neural module
f j

conn.

Fig. 9: Architecture of f j
conn.

3.1.3 Architecture of the termination module
Each time that we update the partial model, we need to
check whether this is the last edit operation that we need to
apply. For this task, the termination module (fend) consists
in applying two linear layers with a sigmoid activation
function to the input graph embedding (label a in Fig. 8),
in order to output the probability of finishing the generation
process.

fend(M
i) = σ(W 2

end · ReLU(W 1
end · hMi)).

3.2 Inference phase
The inference algorithm is described in Algorithm 1. It takes
an initial model and a size threshold and it outputs a com-
plete model. In each iteration, it applies an edit operation to
iteratively complete the model. One step of this Algorithm
is illustrated in Fig. 10. Given a partial model M i, to obtain
the next model M i+1, we apply these two steps:

1) Sample an edit operation from fedit(M
i). In this exam-

ple, the sampled edit operation is to add a Transition
between the Entry e1 and the State s1. This sampling
process is composed by:

a) Sample from fid(M
i) the identifier of the next edit

operation. The softmax layer assigns a probability to

each identifier, so we pick one randomly according to
the probabilities.

b) For each connector in the edit operation, we sample
a node of M i using f j

conn(M
i).

2) Apply the stopping criteria. We sample from fend(M
i)

whether the process should end or not (i.e., it decides
whether the model is already similar enough to the
dataset). Alternatively, it is possible to stop when the
given size threshold is reached.

Algorithm 1 Inference phase

Input Initial model M1, threshold δ

1: M ←M1

2: end← false
3: while |M | < δ and not end do
4: e← sample from fedit(M) ▷ fedit := fid||f j

conn
5: end← sample from fend(M)
6: M ← e(M) ▷ Application of the edit operation
7: end while

3.3 Training phase

The neural model is trained in the task of predicting the
next edit operation given a partial model. Thus, to obtain the
training data points (i.e., the input of the neural network and
the expected output) we traverse the dataset of real models
{M1, . . . ,Mn} transforming each Mi in a sequence of edit
operations. In particular, we obtain sequences of tuples that
are composed by 1) a partial model (i.e., the input of the
neural model) 2) the edit operation that will be applied (this
include the edit operation identifier and the nodes of the
partial graph that will be connected to the edit graph) and
3) a boolean indicating if the generation process must end.
We flat the set of sequences of tuples to a set of tuples to get
the training data points. Finally, we train the neural model
using the cross-entropy loss in each one of the modules fid,
f j

conn and fend.
A key part of the training procedure is the decomposi-

tion of an input model into a sequence of edit operations.
It is worth noting that, for a given model, there is an
exponential number of sequences that can be generated,
which makes the process intractable in practice. Therefore,
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Fig. 10: Application of fedit := fid||f j
conn and fend over the model of Fig. 6.

our approach is to sample k possible sequences for each
model in the training set (i.e., Monte Carlo approximation).

To sample a concrete sequence, our procedure takes
as input a model to be decomposed and the list of edit
operations associated to the meta-model. Fig. 11 shows
how the graph in Fig. 2 is decomposed as a sequence of
tuples consisting of the partial model, the identifier of the
applied edit operation and whether or not this is the last
edit operation. The algorithm works backwards. Starting
with the input model, we iterate until we reach an empty
model by removing elements in each iteration. To remove
elements, we try to undo an edit operation. Undoing an
edit operation requires finding a subgraph in the current
model which is isomorphic to the edit graph. Since there
could be several possible isomorphic graphs, we pick one
randomly. In the example, we can find a subgraph for the

add a Transition operation in the input model M7 , consisting
of t2 and connecting the nodes s1 and s2. We remove t2 and

its references to obtain the next partial model M6 . Now,
we generate a tuple with the identifier of the operation,
the new partial model, the connecting nodes (s1, s2) and
whether this is end of the generation process (true in this
case because this is the first step).

The selection of which edit operation to use is done in
priority order (with the aim of reducing the combinatorial
space), signifying that we pick the first edit operation in the
list and try to apply it. If it is not possible to find a matching
subgraph as explained before, we try the next operation
until one succeeds. In the example, let us assume that all
the add a Transition operations has been undone, and the

next matching operation is add a State (from M4 to M3 in
Fig. 11). We continue the process and the last operation to
undo is add a Region with an Entry to reach an empty model

and end the process (from M2 to M1 in Fig. 11).
The training procedure that uses the algorithm explained

before (sequenceGeneration) is shown in Algorithm 2.
The first group of for loops generates the training data
points (lines 1-6) and the second group trains the model
using stochastic gradient descent (lines 7-12).

4 EVALUATION

In this section we report the results of our evaluation.
We have evaluated how consistent, diverse, realistic, and

scalable is our approach in comparison with other state-
of-the-art generators. We have also evaluated whether the
generated models produced by our generator are novel
(unseen in the training set) and unique (it does not gen-
erate the same models). The experiments presented in
this section are available in https://figshare.com/s/
f8b821fb6e72d8986314. The source code of the stan-
dalone version of the M2 generator is available in https:
//github.com/Antolin1/M2 to be used as a Python
library.

4.1 Datasets

We have considered four datasets as samples of real models.
These models belong to three domains (meta-modeling,
databases and statecharts). Three of the datasets have been
extracted from the MAR search engine [29] and reused
from [22]. They are Ecore-GitHub (281 models) which is a
dataset of Ecore models [22], Yakindu-GitHub (129 models)
a dataset of Yakindu models [28], and Rds-GenMyModel
(402 models) a dataset of relational models extracted from
GenMyModel1. We have also used Yakindu-Exercise (274
models), which is a dataset used in [12], consisting of
Yakindu models [28] made by students as solutions for
similar (but not identical) statechart modeling homework
assignments. For all datasets we removed inconsistent mod-
els and isomorphic models. The boxplot in Fig. 12 shows
the distribution of model sizes. The meta-models and the
constraints considered in each domain, as well as the edit
operations that we have designed for each meta-model are
described in detail in Appendix A.

4.2 Comparing real models against synthetic models

To perform the evaluation, we need a way to assess how
the models generated by a generator are with respect to real
models. Therefore, we need to create a dataset of synthetic
models and compare it with a dataset of real ones. To this
end, we have to adjust the parameters (input conditions)
of each generator to make it generate models as similar as
possible to the real models.

The input conditions of a generator, {ci}ni=1 = {fi}pi=1 ∪
{vi}qi=1, can be fixed (fi) or variable (vi) in the generation
process. For instance, in most generators the input meta-
model and the constraints are fix conditions, whereas the

1. https://www.genmymodel.com/
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...
...

Fig. 11: Decomposition process for the model in Fig. 2.

Algorithm 2 Training procedure
Input Model from the dataset M
Input List of edit graphs/operations E

1: T ← ∅
2: for i = 1, . . . , k do
3: for M ∈ train set do
4: T ← T ∪ sequenceGeneration(M,E)
5: end for
6: end for
7: for e = 1, . . . ,max epochs do
8: Tbatchs ← batchify T
9: for batch ∈ Tbatchs do

10: Update θ w.r.t.
∑

(M ′,e′,V′,f ′)∈Tbatchs

∇Cross-entropyLoss(M ′, e′,V′, f ′)

11: end for
12: end for

size of the output model is a variable condition. Therefore,
we can define a new distribution (associated to a given
generator) which considers fixed and variable conditions
separately as:

Pgen(M) =
∑

(v1,...vq)∈V

P (v1, . . . vq)P (M |v1, . . . vq, f1, . . . , fp)

The sampling process is shown in Fig. 13. To ob-
tain a model, firstly we have to sample (v1, . . . , vq) from
P (v1, . . . vq) (label 1 ), introduce the sampled v1, . . . , vq and
the fixed f1, . . . , fp as input to the generator (label 2 ) and
then use the generator to sample a model M using all the
input conditions (label 3 ). The reason behind this detour is
that, if we want to test the quality of the generator through
a comparison using a set of real models, we must estimate
P (v1, . . . , vq) by using the real dataset (label 0 ) and sample
concrete values of v1, . . . , vq from it. The expectation is
that v1, . . . , vq are the best parameters for the generator
to produce synthetic models as close as possible to the
real ones. Then, we can study the differences between both
the real dataset and the synthetic dataset and evaluate the

ability of generator to obtain realistic models. This process
can be seen as a way of fitting the generator with respect to
a given dataset of real models.

We will use this technique to evaluate our proposal with
respect to several generators, whose features are described
next.

4.3 Baselines
We aim at comparing our model generator against three
state-of-the-art generators which are representative of differ-
ent generation approaches. Taking into account the formu-
lation introduced in the previous section to fit the generator
parameters to each dataset, we have considered these three
generators as baselines to compare with:

• VIATRA graph generator [1]: It is a search based gen-
erator that receives a meta-model M, the number of
objects (o) that the output model will have and a set
of well-formedness constraints Ψ. It can be seen as this
distribution over models:

Pgen(M) =
∑
o∈O

P (o)PVIATRA(M |o,M,Ψ)
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(a) Ecore-GitHub (b) Yakindu-GitHub (c) Rds-GenMyModel (d) Yakindu-Exercise

Fig. 12: Boxplots (without outliers) of the number of objects in each dataset.

Fig. 13: Estimation of P and sample procedure associated to
Pgen.

The sampling process in this case requires establishing
the meta-model and the domain constraints as fix input
conditions and the size of the model as variable con-
dition (named o). Thus, given a dataset of real models,
we can estimate P (o) in order to know which are the
sizes of the real models. Then, to construct a synthetic
dataset of n models we first sample n sizes from P (o)
and invoke the VIATRA generator n times. In this way,
we have constructed a dataset of synthetic models as
similar as possible to the real ones, using the degrees of
freedom provided by the generator.

• EMF random instantiator (RANDOM): This generator
receives a meta-model M, the number of objects (o)
that the output model will have and the average num-
ber of references per object (d). It does not support
domain constraints so the generated models could not
be consistent. We fix M to the corresponding meta-
model and d to its default value. We consider o as
variable. Therefore, this generator can be seen as this
distribution over models:

Pgen(M) =
∑
o∈O

P (o)PRANDOM(M |M, o, d)

• RandomEMF [10] (rEMF): It is a grammar-based ran-
dom generator. It receives a meta-model M and a
grammar G that guides the generation process.

Pgen(M) = PrEMF(M |M,G)

4.4 Experimental procedure
To make the generators comparable and to be able eval-
uate them with respect to a dataset of real models R =
{M1, . . . ,Mn}, we adjust the parameters of each generator
as explained above and follow the procedure depicted in
Fig. 14. This method is similar to the one proposed in [22]
and is summarized as follows:

Training 

Generator

1 2

3 Assessment
4

Fig. 14: Experimental procedure. R is the dataset of real
models. Rtrain and Rtest are the subsets of R used to fit
the generators and perform the assessment respectively. S
represents the set of generated models.

1) R is split into Rtrain and Rtest (label 1 ). In our
experiments we use 60% for training and 40% for
testing.

2) Rtrain is used to train the generators (label 2 ), that is,
to fit their parameters to Rtrain:
• To train RANDOM and VIATRA we follow the ideas

of [22], that is, we approximate P (o) by using Kernel
Density Estimation (KDE) with the gaussian kernel.
The bandwidth (which is a hyperparameter of the
KDE) is estimated with the Improved Sheather Jones
method [35].

• To train rEMF, that is, to estimate G we use the same
approach as [22]. It consists in building the rules
manually and using maximum likelihood estimation
to estimate the parameters of the rules.

• To train our model, that is, to estimate θ (all the
parameters of the neural network) we use the Algo-
rithm 2.

3) Once the generator is trained, we use it to generate
|S| = 500 models (label 3 ).

4) The set S together with Rtest will be used to perform
the assessments (label 4 ).

4.5 Assessing Consistency
To evaluate consistency, for each pair of dataset and genera-
tor we study the proportion of inconsistent models in the set
S of generated models. The results are reported in Table 1.

As it is expected, RANDOM obtains the worst results.
Furthermore, this generator does not produce any consistent
model in the case of Yakindu because of its inability to
take into account the associated constraints. VIATRA is a
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Ecore-GitHub Yakindu-GitHub Rds-GenMyModel Yakindu-Exercise
RANDOM 4.2% 0% 6.4% 0%
rEMF 100% 48.2% 93.4% 60.4%
VIATRA 100% 100% 100% 100%
M2 99.8% 90.8% 99.4% 87.0%

TABLE 1: Proportion of consistent models for each generator and for each dataset.

Ecore-GitHub Yakindu-GitHub Rds-GenMyModel Yakindu-Exercise
RANDOM 23.8 ∞ 14.6 ∞
rEMF 1 2.1 1.1 1.7
VIATRA 1 1 1 1
M2 ∼1 1.1 ∼1 1.1

TABLE 2: Expected number of runs until a consistent model is reached.

consistent model generator so all the generated models are
consistent. rEMF obtains similar results in comparison with
our generator in Ecore-GitHub and Rds-GenMyModel (but at
the cost of manually tweaking the grammars to make sure
that few constraints are violated). However, in the case of
Yakindu, ours works significantly better.

It is possible to overcome the limitation of a generator
not achieving full consistency. To turn a partially consistent
generator into a fully consistent one, it is enough to run
it multiple times until the required number of consistent
models are obtained, discarding the inconsistent ones. Thus,
in Table 2 we report the expected number of runs to obtain
a consistent model for each generator and for use-case.
This table was computed using Table 1 and the formula
1 + 1−p

p where p is the probability of obtaining a consistent
model from the generator (i.e., cells of Table 1). The random
variable associated to a generator and defined as the num-
ber inconsistent models until a consistent one is obtained
follows a geometric distribution. This is because, each run
can be seen as an independent Bernoulli trial.

Assessment: Our generator is not consistent, that is,
there is no guarantee that the generated models respect
the domain constraints. The only truly consistent gen-
erator is VIATRA. However, the majority of the models
produced by M2 are consistent and we can conclude that
M2 is almost consistent. However, it is possible to turn
M2 into a fully consistent generator by performing a few
more extra invocations.

4.6 Assessing Novelty and Uniqueness
Before comparing with the other generators in terms of
diversity and realism, we have studied whether the models
generated by M2 are novel (that is, not seen in training
data) and unique (the generator does not always generate
the same models). To this end, we remove the inconsistent
models from the set of generated models S and calculate the
percentage of unique and novel models:

PUNM =
|uniques(CON ∩NOV)|

|CON|
× 100%

where CON denotes the subset of consistent models of S ,
the function uniques receives as input a set of models and
removes the duplicates (isomorphic) and NOV denotes the
models in S that are unseen in the train set.

Table 3 shows the percentage of unique and novel mod-
els over the set of consistent generated models for each

PUNM
Ecore-GitHub 85.8%
Yakindu-GitHub 77.3%
Rds-GenMyModel 95.2%
Yakindu-Exercise 100%

TABLE 3: Percentage of unique and novel models over the
set of consistent generated models for each one of the four
datasets.

one of the four datasets achieved by our generator. The
worst case corresponds to the dataset Yakindu-GitHub. This
is caused by the fact that the real dataset is composed by
relatively small models, so it is easy to overfit the training
data (lower |NOV|) and it is more likely to repeat models
in the generation process (lower |uniques(CON ∩ NOV)|).
On the other hand, the situation in Yakindu-Exercise is the
opposite. This dataset is more difficult to overfit since it is
composed by large models (higher |uniques(CON∩NOV)|).

Assessment: The percentage of novel and unique mod-
els over the set of consistent models generated by our
generator is typically high.

4.7 Assessing Diversity

To study the diversity of the generated models we use the
internal diversity metric proposed in [18]. It is defined by
0 ≤ dint

i = |Si(M)|
|M | ≤ 1, where |M | is the number of objects

of the model and |Si(M)| is the number of neighborhood
shapes of range i. For each real and synthetic model, we
compute its internal diversity fixing i = 5 (as it is done
in [12]). We remove the inconsistent models from the set
of generated models. The rationale is to avoid the bias
produced by shapes that are not allowed (since they do not
respect the domain constraints).

The results are shown in Table 4. We compare the in-
ternal diversity of the models generated by M2 with the
dataset of real ones by using the t−test. We have found
differences in Ecore-GitHub and Yakindu-Exercise. In those
datasets, synthetic models have more internal diversty. In
Yakindu-GitHub and Rds-GenMyModel, we have not found
differences.

Assessment: Baselines are more diverse than the real
models and outperform our generator in this property.
However, M2 is at least, as diverse as the real models.
Thus, if the dataset is diverse, our generator will be
diverse.
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Ecore-GitHub Yakindu-GitHub Rds-GenMyModel Yakindu-Exercise
RANDOM 0.265± 0.063 - 0.571± 0.140 -
rEMF 0.793± 0.141 0.900± 0.106 0.614± 0.177 0.740± 0.145
VIATRA 0.748± 0.176 0.889± 0.102 0.582± 0.177 0.857± 0.056
M2 0.724± 0.214† 0.836± 0.159 0.385± 0.231 0.578± 0.151†

Real models 0.644± 0.262 0.866± 0.169 0.428± 0.231 0.507± 0.079

TABLE 4: Averages ± standard deviations of the internal diversity for each generator and for each dataset. In the M2 row,
the symbol † indicates that there are statistically significant differences (using t−test) when comparing with the real models
(p−value< 0.01).

4.8 Assessing Realism

To assess the sample quality of the generators in terms of
realism, we use the Maximum Mean Discrepacy [26] (MMD)
over graph metrics [27] rather than simple comparisons of
statistics [5], [12]. This method is widely used to assess
generative models of graphs [24], [27], [36] and compares
all moments of their empirical distributions.

One use-case of the MMD is to solve the two-sample
test [26], i.e., given two set of samples, determine whether
these sets come from the same distribution. In this case,
MMD can be seen as a type of metric that compares the two
distributions that generate these two sets of samples and,
the closer to zero, the more similar the distributions are.
This metric is flexible (it can deal with any type of samples
not only numeric) because it relies on a kernel.

In our setting, given the set Rtest = {M1, . . . ,Mn}
and the set S = {M ′

1, . . . ,M
′
m}, we extract the graph

distribution of each model obtaining Dtest = {g1, . . . , gn}
and S = {g′1, . . . , g′m}. Where each gi, g

′
j are univariate

distributions over R (such as node distribution, clustering
coefficient, etc). Let us suppose that Dtest comes from the
distribution ggg and S comes from g′g′g′. We want to know how
close are ggg and g′g′g′ so we compute the MMD2:

MMD2(ggg||g′g′g′) = Eg1,g2∼ggg [k(g1, g2)]+Eg′
1,g

′
2∼g′g′g′ [k(g′1, g

′
2)]−

−2Eg,g′∼ggg,g′g′g′ [k(g, g′)] .

Here, k is a kernel function. We use the kernel proposed
in [27] which uses the first Wasserstein distance to compare
two distributions.

Regarding the graph distributions, we consider Mul-
tiplex Participation Coefficient (MPC), Normalized Node
Activity (NNA) and Degree Distribution (DD) used in
previous works to assess the realistic property of model
generators [5], [12], [21]. The definitions of MPC and NNA
are shown in Appendix B for completeness.

As it is done when assessing diversity, we remove in-
consistent models from the set of generated models and we
report the MMD2 for each generator, dataset and graph
metric. The results are reported in Table 5. The generator
prosed in this work outperforms all the baselines in all do-
mains since it obtains, for each metric, the lowest MMD2.

Assessment: Our generator, M2, outperforms all the
baselines in the realistic property. The results indicate
that the models generated by our generator tend to be
structurally similar to the ones on the corresponding
datasets.

4.9 Assessing Scalability

We are interested on evaluating the scalability of our gener-
ator, taking into account the other baselines. To this end,
for each generator and dataset we produce 500 models
following a distribution of model sizes. Each distribution
is estimated to reflect the sizes of the corresponding dataset.
For each invocation of a generator, we measure the time
it takes to produce the model and the size of the pro-
duced model. Then, to present the results, we group the
generated models by ranges of sizes and take the average
time. The ranges were calculated by splitting the interval
[mintest,maxtest] (where mintest is the minimum size of
the models in the test set and maxtest the maximum one) in
three intervals of approximately the same size.

The results are shown in Table 6. It can be observed that
rEMF and RANDOM have a very good performance, with
average times around a few milliseconds to generate a single
model2. However, M2 and VIATRA present large execution
times since their design is intended to generate richer mod-
els, thus they are compared against each other. M2 performs
better than VIATRA in the Yakindu and Ecore domain. In
the case of Rds-GenMyModel, VIATRA is faster in the ranges
[7, 80] and [81, 153]. However, in the range [154, 227], M2
is faster. We believe that this is caused by the fact that the
generation time of VIATRA grows exponentially, while the
M2 grows polynomially. This can be observed by looking at
the log-log scatter plot of the execution time with respect to
the number of elements. For example, in the case of Ecore-
GitHub (Fig. 15) and Rds-GenMyModel (Fig. 16), we can see
that the M2 generation time follows a straight line whereas
the VIATRA generation time follows an exponential line.
This can be caused by the fact that VIATRA is a search-based
generator and the search space grows exponentially. On
the other hand, the functions fedit and fend in Algorithm 1
(generation algorithm of M2) are neural networks so the
forward procedure is polynomial.

One shortcoming of M2 is that it has to be trained to be
able to generate models. However, this process is only exe-
cuted once. Table 7 shows the training time for each dataset
which includes the generation of the training datapoints (set
T in Algorithm 2). The training is performed on a single
GPU NVIDIA GeForce RTX 2060 and the hyperparameters
used are shown in Appendix C.

2. We found that RANDOM has problems when generating small
models due to its generation algorithm, which is designed to generate
large models. Because of that, RANDOM did not produce models in
between the intervals [6, 11] and [12, 16] in the case of Yakindu-GitHub.
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Ecore-GitHub Yakindu-GitHub Rds-GenMyModel Yakindu-Exercise
DD NNA MPC DD NNA MPC DD NNA MPC DD NNA MPC

RANDOM 1.009 0.639 1.044 - - - 0.541 0.130 0.549 - - -
rEMF 0.078 0.017 0.018 0.087 0.103 0.171 0.137 0.083 0.166 0.309 0.222 0.356
VIATRA 0.145 0.096 0.139 0.469 0.596 0.789 0.201 0.089 0.442 0.538 0.257 0.362
M2 0.019 0.010 0.016 0.015 0.002 0.004 0.015 0.007 0.011 0.276 0.006 0.004

TABLE 5: MMD2 for each generator, dataset and graph metric.

Ecore-GitHub Yakindu-GitHub Rds-GenMyModel Yakindu-Exercise
[4,63] [64,123] [124,184] [6,11] [12,16] [17,22] [7,80] [81,153] [154,227] [90,96] [97,103] [104,110]

RANDOM 0.009 0.013 0.014 - - 0.009 0.011 0.011 0.015 0.011 0.012 0.012
rEMF <0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.003 <0.001 <0.001 <0.001

VIATRA 0.657 1.255 15.869 0.221 0.389 0.192 0.132 0.465 1.965 1.073 0.902 1.030
M2 0.088 0.999 1.951 0.023 0.039 0.059 0.181 0.777 1.868 0.681 0.756 0.838

TABLE 6: Average generation time (in seconds) for each generator, dataset and size split. The symbol ’-’ means that there
are no models whose sizes belongs to the interval.
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Fig. 15: Generation time vs size for each one of the genera-
tors in Ecore-GitHub.
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Fig. 16: Generation time vs size for VIATRA and M2 in Rds-
GenMyModel.

Assessment: Both rEMF and RANDOM are better in
terms of scalability than VIATRA and M2. Comparing
M2 with VIATRA, the former is better in the inference
time because the VIATRA generation time grows expo-
nentially with respect to the size of the produced models.
A shortcoming of M2 is the fact that it must be trained
before the generation.

Training time (min)
Ecore-GitHub ∼ 10
Yakindu-GitHub ∼ 1
Rds-GenMyModel ∼ 26
Yakindu-Exercise ∼ 14

TABLE 7: Training phase duration.

4.10 Global Assessment

This work was aimed to design a generator focused on
satisfying the realistic property and we have shown that
M2 outperforms the baselines in this property. However,
it also achieves acceptable results in the other properties.
In particular, M2 is almost consistent with proportions of
consistent models greater than 85%. Regarding diversity,
by design we cannot ask the generator to be more diverse
than the dataset it tries to imitate. But we can claim that the
diversity property is reached if the source dataset is diverse.
One shortcoming of M2 is that it has to be trained before
being able to produce models, but its inference procedure is
scalable.

A distinctive feature of M2 is that it focuses on realism at
the expense of sacrificing a bit some of the other properties.
In the evaluation, we have shown that, with our approach,
we can achieve results almost similar to state-of-the-art gen-
erators but supporting realism, a property which has been
neglected until now. In particular, the fact that consistency is
not fully achieved is not an important issue because we can
repeatedly invoke the generator until the required consistent
models are obtained and discard the inconsistent ones.

Regarding the user effort to use each generator, it is
worth mentioning that rEMF depends on a grammar G that
is defined by the user and guides the generation process. To
perform the experiments, we put a lot of effort when de-
signing the rules in order to respect the domain constraints
and provide realistic models. The result of this effort is a
difficult grammar composed by some unintuitive twisted
rules. Therefore, the measures of consistency and the realism
reported in this paper could be optimistic in the case of
rEMF. On the other hand, for M2 the user only needs to
define edit operations, whose definition is intuitive and fast
to establish since it is what a user performs when she is
making a model (e.g., add a Transition, add a State, etc).

It is important to note that the edit operations can be
defined automatically by extracting atomic operations from
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Consistency Diversity Realism Scalability
RANDOM
rEMF
VIATRA
M2

TABLE 8: Summary of the four properties for each one of
the generators.

the meta-model. However, if all edit operations are atomic
then the generator may struggle in terms of consistency.
Therefore, we recommend using the domain knowledge to
design more complex edit operations and put them on the
top of the priority list. With the current implementation of
M2, the complex edit operations have to be designed man-
ually. Nevertheless, this design is not necessarily difficult.
One can use as reference existing graphical editors, APIs and
even the associated meta-model constraints to take inspira-
tion to define these edit operations. For instance, in the use-
cases presented in this paper, we have used the graphical
editors of EMF [37], Yakindu [28], and GenMyModel as
references to derive complex edit operations (only 3, 2, and
1 complex edit operations were required in each case). On
the other hand, we believe that this type of operations can
be derived directly from the meta-model and the associated
constraints by using logic analysis (SAT solvers). We plan to
tackle this problem in the future.

A limitation of our generator is that the size of the output
model is difficult to be controlled by the user in the inference
phase. This is because stopping criteria in the Algorithm 1
is given by a threshold δ and the module fend (which is
a black box neural network). Thus, the size of the output
can be any size in the interval [|M1|, δ + k] (where k is the
number of new nodes added by the largest edit graph). Two
ways to solve this problem are twisting the Algorithm 1 with
some heuristic or trying to learn a conditional probability
Pθ(M |o) (where o is desired size of the output model). We
left the exploration of these two solutions as future work.

Theoretically, M2 learns the distribution of real models.
Thus, if the training models satisfy a set of constraints or
graph properties, the generated graphs tend to satisfy them.
For instance, let us suppose that we have a constraint which
establishes that the number of objects has to be prime. In
this case, the training samples must also have sizes of five
or seven. After training, the generated models will most
probably have sizes of five and seven. This is because M2
tries to imitate the distribution of real models which also
includes the sizes (five and seven). However, it is unlikely
that the generator produces models with size 121, since this
type of valid models has not been seen in the training. It
is important to remark that the statistical graph properties
that M2 could recognize and reproduce is given by the
expressiveness of the neural model. In this case, it has been
shown that every graded modal logic formula defined over
nodes is expressible by a GNN [38], [39].

Table 8 shows a summary of the assessment of the four
properties for each generator. The worst generator is RAN-
DOM which stands out in scalability but performs poorly in
the other properties. The other generators have weaknesses
and strengths, but they are applicable depending on the
property of interest. For instance, rEMF is good for diversity

and scalability, VIATRA is a perfect option when the user
looks for consistency, and diversity, whereas M2 is a good
choice when the user is interested in realism but also having
a good balance with respect to diversity, consistency and
scalability.

5 RELATED WORK

In this section we review some works related to our pro-
posal, organized in six categories: SAT-solver based model
generators, generators based on constructive formalisms,
search-based model generators, traditional random models
of graphs, deep generative models of graphs and assessing
realism in model generators.
SAT-solver based model generators. The underlying idea
of these generators is to map the meta-model and the
constraints to logical formulas. Consistent models are ob-
tained by using SAT-solvers over these formulas. There-
fore, it is possible to build these type of generators using
model finders like Formula Framework [9], Alloy [7] and
EMF2CSP [8]. The properties of Alloy-based SAT solvers
have been evaluated with respect to VIATRA Generator
in a number of works [5], [12], [18], [40], showing that
Alloy produces consistent models, but struggles at diversity,
realism and scalability.
Generators based on constructive formalisms. The idea
of these generators is to use formal grammars or graph
grammars to guide the generation process. Examples are
the generator proposed in [11] (that uses graph grammars),
RandomEMF [10], and [30]. In particular, the work in [30]
uses a rule-based approach to generate models by consec-
utively applying transformation rules. Some of these rules
are derived from the meta-model and they are very similar
to our atomic edit operations.
Search-based model generators. The generation problem
is transformed into a search problem whose target is a
model that respect the constraints and the meta-model.
An example is VIATRA solver [1] (and its later improve-
ments [12], [41]) which is more scalable than SAT-solver
based generators [1], [5] since it uses a scalable graph
engine. Another example is SDG [13]. It proposes a search-
based custom OCL solver approach to generate synthetic
data for statistical testing and it is used later in [14] to
synthetize test data in UML.
Traditional random models of graphs. Random models of
graphs like Erdös-Rényi [42] or Watss-Strogatz [43] were
proposed to model the networks that are in nature. They
can also be considered model generators but the graphs that
they produce are unlabeled.
Deep generative models of graphs. The complexity of the
networks that we can find in nature cannot be fully ex-
plained by the traditional random models. Therefore, some
generative models of graphs based on deep learning have
been proposed. There are basically two types of generative
methods [24]: one-shot generating and sequential generat-
ing. One-shot learning generates full graph graph in one
shoot. For example, GraphVAE [44] that uses variational
autoencoders belongs to this group. On the other hand,
sequential generating aims to generate nodes and edges
in a sequential way. Our generator belongs to this group.
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Some examples are: GraphRNN [27], which uses a two-
level recurrent neural network to generate a graph; [45]
considers a generation process in which each step can be
to add a new node or add a new edge. [33] tackles the
molecule generation process as a sequence of transitions
(adding a new atom or connect an existing one to another).
Our approach is very similar to this work but there are
two differences, firstly the neural model used is not the
same (our neural model is prepared for dealing with labeled
edges) and secondly, the edit operations can be seen as
a generalization of their defined transitions. Similarly, the
work by You et al. [46] approaches the generation process as
a Markov Decision Process and tries to optimize molecule
properties while ensuring realism.

Assessing realism in model generators. The authors in [21]
propose to use multidimensional graph metrics to character-
ize realistic models. In particular, Varró [5] uses the average
KS statistic of these metrics between all the synthetic mod-
els and all the real models. As it is pointed out in [22], this
metric does not take into account dissimilarities inside the
set of real models and inside the set of generated models
so it is not consistent. In this paper, we propose to use the
MMD [26], [27] over the graph statistics proposed in [21]
to measure how realistic a generator is. It is similar to the
method of [5] but it is consistent. Finally, [22] proposes to
use GNNs together with C2ST [47] to assess the realistic
property. We decide not to use this technique here because
of the small size of the test set.

6 CONCLUSION AND FUTURE WORK

In this paper we have proposed a new model generator, M2,
fully focused on satisfying the structurally realistic property.
It relies on a deep autoregressive model which constructs a
model by sampling an edit operation in each step of the
generation process. It is able to imitate the structure of the
training models but generating novel ones. Furthermore, in
this work we have evaluated M2 and we have compared
it with three state-of-the-art generators. We concluded that
our generator outperforms the other generators in the re-
alistic property, the majority of the generated models are
consistent, the diversity of the generated models is similar
to the real ones and the generator process is scalable once
the generator is trained.

As future work, we plan to derive complex edit oper-
ations automatically from the meta-model and tackle the
limitation of the inference phase with respect to the size
of the output models We also want to make the generator
fully realistic by considering attribute values. Finally, we
want to explore the integration of M2 into another generator,
like VIATRA generator, in order to enhance properties like
consistency and diversity.
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