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Abstract—Model-Driven Engineering practitioners have to deal
with the construction of modelling evironments by devising meta-
models, grammars, editors, etc. One of the goals of the application
of Machine Learning to MDE is to use ML algorithms to assist
the MDE expert in these tasks. These algorithms cannot directly
receive raw models or meta-models as input, but they typically
have to be transformed into a numeric representation, i.e., a
vector. In this context, a common approach is to use pre-trained
Word Embeddings, which define mapping functions that associate
words to semantic vectors. However, current word embeddings
are trained with general texts and lack the technical words which
typically arise in the modelling domain. To tackle this issue, we
have collected a corpus of modelling texts from well-known mod-
elling venues, and we have trained two types of word embedding
models. The resulting embeddings (named WordE4MDE) are
specialised to address ML tasks in the MDE domain. We have
performed an extensive evaluation using the Ecore models of
the ModelSet dataset and two state-of-the-art word embeddings
(GloVe and Word2Vec) as baselines. We show that WordE4MDE
outperforms these two baselines in three meta-modelling tasks,
namely meta-model classification, meta-model clustering, and
meta-model concept recommendation. WordE4MDE embeddings
are available at https://github.com/models-lab/worde4mde and
can be loaded using standard Python libraries for their use in
ML pipelines.

Index Terms—Model-Driven Engineering, Machine Learning,
Word Embeddings

I. INTRODUCTION

The use of Machine Learning (ML) to tackle Model-Driven
Engineering (MDE) problems has recently become an active
research field. In the last years, a number of proposals about
this topic have been presented. For instance, ML algorithms
have been used to label repositories of models and meta-
models [1]–[3], to build recommender systems for software
modelling [4], [5], to assess realistic model generators [6],
or to build model transformations [7]. A key element in the
application of ML to MDE is to choose a suitable represen-
tation of the software artefacts [3]. This representation has
to be readable by the ML model and it may have a great
impact in the performance of the model. In particular, such
representation has many times the form of a numeric vector
that encode the features of the given artefact.

Word embeddings is an important tool in the ML toolkit
since it enables encoding words as vectors. This technique
consists in mapping words to low-dimensinal real-valued
vectors which encode the semantic information of the input
words [8]. This technique has already been used in the context
of MDE to recommend UML concepts [9], [10] by using

the similarity between vectors, and to classify models and
meta-models [3] by embedding a given artefact into a feature
vector. A common approach here is to rely on pre-trained
word embeddings released by important institutions such as
Stanford (GloVe [11]) or Google (Word2Vec [12]). These
embeddings have been trained with an extensive corpus of
general text coming from sources like Wikipedia, Twitter, or
Google News among others. However, an important issue of
these embeddings, for their use in MDE, is that they lack the
technical words which typically arise in the modelling domain.
For instance, these embeddings do not know about concepts
like “Petri net” or may consider that the word “State” is related
to countries instead of to state machines.

To overcome the aforementioned issue, we have trained two
word embeddings with a large corpus of modelling texts and
released WordE4MDE (Word Embeddings for MDE). More
specifically, we have collected a corpus of MDE texts from
well-known modelling conferences and journals, and then we
have trained a Word2Vec model [12] and a GloVe model [11]
over this corpus. To evaluate the usefulness of our embeddings
we have used them in three downstream tasks, namely, meta-
model classification, meta-model clustering, and meta-model
concept recommendation. As baselines, we consider two
widely-used general-purpose word embeddings: GloVe vectors
trained with Wikipedia and Gigaword and Word2Vec vectors
trained with Google News. Through an extensive evaluation
using the Ecore models of the ModelSet dataset [13], we show
that our embeddings outperform these baselines in these three
tasks, thus concluding that WordE4MDE models are a good
choice when dealing with ML tasks related to the usage of
technical modelling vocabulary. The embeddings are available
at https://github.com/models-lab/worde4mde and they can be
loaded through the gensim Python library [14] for their use in
standard ML pipelines.

Organization. Section II motivates the need for embeddings
in MDE. Section III presents the background needed to un-
derstand the paper. Section IV explains how the WordE4MDE
vectors have been created. In Section V, we report the evalu-
ation of the proposed embeddings in three tasks: meta-model
classification, meta-model clustering, and meta-model concept
recommendation. Section VI highlights several aspects of the
experiments, findings, and limitations of WordE4MDE. Sec-
tion VII discusses the related work and Sect. VIII concludes.
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II. MOTIVATION

In this section, we motivate the need for word embeddings
designed specifically for the MDE domain by showing the
inability of current pre-trained word embeddings to deal with
technical domains which typically arise when applying ML to
MDE.

A. Encoding models as vectors

An important task in MDE is to create domain-specific
modeling environments. Many times, this task requires dealing
with technical domains, like petri nets, state machines, etc.
Typically, the MDE developer needs to create meta-models,
grammars, editors, etc. to build the modeling environment.
One of the goals of the application of ML to MDE is to help
in this type of tasks.

In particular, ML tasks related to dealing with meta-models
have been proposed in the literature, like meta-model clas-
sification [2], clustering [15], and recommendation [4]. An
important part of these approaches is how to vectorize the input
(meta-)models so that they can be processed by the underlying
ML algorithms. A common approach is to represent a model
as a bag of words. Fig. 1 shows the bag-of-words represen-
tation of a Statechart meta-model. Essentially, the names of
the meta-model are extracted into a multiset. Although this
representation discards the meta-model structure, the terms in
the meta-model still contains enough information to achieve
good results in many tasks (e.g., in model classification as
it is shown in [3]). Actually, even structural ML models like
graph neural networks need to vectorize part of its input (e.g.,
string attribute values), and therefore this encoding problem
also applies to them.

There are roughly two ways of vectorising bags of words.
For the sake of concreteness, we will focus on bags of words
to encode meta-models (see Fig. 1):

• TF-IDF vectorisation. This technique maps a meta-model
to a huge vector whose dimension is the size of the
vocabulary (i.e., the number of distinct terms in all
the considered meta-models). Given a meta-model, the
importance of each word of the meta-model with respect
to the collection of meta-models (i.e., the dataset) is
reflected by the value in the corresponding dimension
of the meta-model vector. For instance, in Fig. 1 the
term state is the most important to characterize the meta-
model. The main issue of the TF-IDF vectorisation is the
high dimensionality of the produced vectors. This causes
an expensive training phase. Futhermore, distance-based
ML algorithms that are fed with TF-IDF vectors suffer
from the curse of dimensionality.

• Word embeddings. This technique maps each individual
word to a low-dimensionality vector. A key property is
that a word embedding is a learned representation (i.e.,
there is a ML model which has learned to produce the
mapping from words to vectors) in which words that
have similar meanings have close vectors. In this way, a
common approach is to rely on off-the-shelf, pre-trained

word models which have been trained with some large
natural language corpus.
In this way, to vectorise a meta-model, a pooling of
word vectors is applied. Pooling is a technique typically
used in deep learning to reduce the number of features
by applying some summarization operator over a set of
vectors (e.g., the average is a very common pooling
operator). Thus, each one of the words of the meta-model
is mapped to a vector, and the meta-model is represented
as the average of all the vectors. The dimension of
this representation is the word vectors’ dimension that
is normally much lower than the TF-IDF vectors. An
additional advantage of this approach, is that the vectors
encode the semantic meaning of the words.

In summary, current state-of-the-art in ML prefers the use
of word embeddings due to their lower dimensionality (which
fits better with deep learning architectures) and their ability
to capture the word semantics (which could improve the
generalization capabilities of the ML models).

B. Limitations of current pre-trained word embeddings
State-of-the-art pre-trained word embeddings may not work

well when dealing with modelling artefacts (meta-models,
grammars, editors, etc.) which target technical domains. This
has been shown empirically in [3] for the meta-modelling
domain. The main reason is that the terms that compose the
bag-of-word representations are very technical and specific,
while current pre-trained word embeddings have been trained
with general texts. For instance, we can observe the category
distribution of the ModelSet dataset [13] in Fig. 2. It shows
that the majority of categories are technical and specific of
the modelling domain (e.g., statemachine, petrinet, modelling,
class-diagram, etc). This means that if we want to succesfully
use a pre-trained word model, it must be able to “understand”
these words. However, we can see that current word embed-
dings struggle to capture the proper meaning of these words
in the MDE context. In particular, let us consider the GloVe
embeddings released by Stanford, trained with Wikipedia 2014
and Gigaword 5. If we feed GloVe with the terms in the meta-
model of Fig. 1, we can observe the following:

• The term statechart does not belong to the vocabulary
of the GloVe embeddings. Thus, we cannot obtain its
embedding and the final pooling vector will ignore that
term.

• The term state does belong to the GloVe vocabulary, but
the three most similar terms according to this embedding
are federal, states, and government. Thus, the meta-
modelling semantics are not properly reflected in the
state’s word embedding.

These two examples clearly show that GloVe embeddings1

trained with general texts do not generalize well in the
technical modelling domain and, hence, may struggle when
being used as part of ML models addressing MDE tasks.

1Word2Vec embeddings have similar problems. Please refer to our imple-
mentation to check this fact or to try additional examples: https://github.com/
models-lab/worde4mde
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Fig. 1. Bag-of-words vectorisation.

TABLE I
TOP 5 MOST SIMILAR TERMS ACCORDING TO GLOVE TRAINED WITH MDE CORPUS AND GLOVE RELEASED BY STANFORD.

Term GloVe released by Stanford GloVe trained with our MDE corpus
state federal, states, government, department,officials states, machines, machine, transition, transitions
ecore bruinsburg, falls-windsor, thongrung, r.winters, osowiec emf, metamodel, metamodels, gopprr, metametamodel
petri pasanen, dish, kokko, dishes, laurentius nets, net, colored, placetransition, stochastic
grammar vocabulary, syntax, english, school, pronunciation grammars, contextfree, graph, productions, syntax
atl roughing, edm, nyr, stl, buf transformation, transformations, qvt, modeltomodel, mtatl

Total
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Total
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Fig. 2. Top 15 categories of Ecore models in ModelSet. Extracted from [13].

To further stress this fact, Table I shows more modelling
terms typically found in the MDE context. The second column
shows the top five most similar words given by GloVe, which
most of the time fail to capture the intended semantics. In the
third column, we show the top five most similar words given
by an alternative GloVe model trained by ourselves using a
modelling corpus. As it can be observed, the results make
more sense and every output term is related to the modelling
domain.

III. BACKGROUND

This section presents what word embeddings are and ex-
plains more in-depth the Word2Vec model and the GloVe
model used in our approach.

A. Word embeddings

Word embeddings are fixed-length, dense, and distributed
representations of words which have been proven to be useful
in many Natural Language Processing tasks [8]. In particular,
they are useful in our scenario to encode modelling artefacts

(e.g., meta-models) as vectors. In the literature, several ap-
proaches have been proposed to compute such vectors from a
given corpus (e.g., one-hot encoding, SVD-based techniques,
etc.). However, the ones that are scalable and provide the
best results are the iteration-based techniques. This family of
approaches relies on a neural network and its internal weights
are the embeddings of the words. Well-known techniques that
belong to this group are Word2Vec [12] and GloVe [11]. These
two models will be explained next since they are the ones used
to create the WordE4MDE embeddings.

B. Word2Vec

The Word2Vec tenchique proposes two algorithms to learn
the word vectors by using a neural network. The first one is
called continuous bag-of-words. Here, the neural network is
trained to predict a center word from its surrounding context.
For instance, given the sentence ATL is dynamically
typed, the word dynamically is masked and has to be
guessed from the context i.e., ATL is _ typed. The other
one, namely skip-gram, aims to predict the surrounding words
by receiving as input the center word. That is, the word
dynamically is given as input and the neural network is
trained to predict the rest of the words. In the remaining of this
section, the focus will be on the latter model as it is the one
used in WordE4MDE. We have selected skip-gram because it
works better with small and specific corpora [16].

Let us set V as the global vocabulary of words. Given a
window of size m, that is, a sequence of words composed
by a center word, m words on its right, and m words on its
left W = [wc−m, . . . , wc−1, wc, wc+1, . . . , wc+m], the aim of
the skip-gram model is to predict W − {wc} using the center
word wc. To do so, the model defines two matrices V,U and
performs these steps:

1) wc is transformed into a one-hot vector x ∈ R|V |.
2) x is mapped to a contextual vector vc = Vx ∈ Rn.



3) The contextual vector is used to obtain a score vector
z = Uvc.

4) Softmax is applied to z to obtain probabilities y =
softmax(z). The interpretation of y ∈ R|V | is the
following: the coordinate j represents the probability of
the word j (of the vocabulary) to appear in W − {wc}.

The columns of V and the rows of U are the target
embeddings. They are randomly initialized and trained using
stochastic gradient descent to minimise the following loss:

− logPV,U (W − {wc}|wc) = −
∑

w∈W−{wc}

logPV,U (w|wc).

Finally, we obtain two embeddings (the columns of V and
the rows of U) for each word in the vocabulary. A common
approach to obtain the final embedding for each word is to
average both embeddings.

C. GloVe

The GloVe model leverages global statistical information
by using the global word-word co-occurrence matrix. More
specifically, let us denote X as the word-word co-occurrence
matrix, where each Xi,j is the number of times the word j ap-
pear in the context of the word i. The GloVe model minimises
a loss function that employs global statistical information of
the corpus: ∑

i

∑
j

f(Xi,j) (uj · vi − logXi,j)
2
,

where
• f(·) are used to control the weight of rare co-occurrences.

It is defined as:

f(x) =

{
(x/xmax)

α, if x < xmax

1, otherwise

Rare co-occurences are penalized (x < xmax) and frequent
co-occurrences are not overweighted (x ≥ xmax).

• uj and vi are the embeddings to be learnt.
The GloVe model consists of minimizing the square error

between the dot product of the vectors and the log of the
counts Xi,j weighted by f(Xi,j).

IV. BUILDING WORD EMBEDDINGS FOR MDE

In this section, we describe how WordE4MDE embeddings
have been computed by providing details about the data
sources of the corpus, preprocessing steps, corpus statistics,
and the traning hyperparameters of the two models that we
have considered: skip-gram and GloVe.

A. Data sources

The goal of WordE4MDE is to learn a semantic repre-
sentation of the technical words which normally appears in
the modelling context. Therefore, we need to collect a large
amount of texts specifically related to modelling. Our approach
has been to rely on well-known modelling, Model-Driven

TABLE II
MODELLING VENUES CONSIDERED IN THE CORPUS.

VENUE TYPE YEARS #ARTICLES
MoDELS Conference 1998-2022 767
MoDELS Companion Workshops 1998-2022 847
SoSyM Journal 2002-2022 1039
ER Conference 1992-2022 1628
ECMFA Conference 2005-2022 373
ICMT Conference 2008-2018 182
SLE Conference 2008-2022 313
ICGT Conference 1979-2022 379

Engineering and Language Engineering venues. The summary
of the considered venues is presented in Table II.

A complementary set of data sources could be general
software engineering venues like IEEE TSE, JSS, IST, ICSE,
FSE, etc. Papers from such venues could be filtered by
“modelling keywords”. However, we have not considered them
in this version of WordE4MDE since we could not manage to
obtain full institutional access to the articles.

B. Preprocessing

The downloaded articles are in PDF format, therefore we
need to convert them to text so that they can be processed by
the Word2Vec and GloVe algorithms. The preprocessing steps
that we have followed are the following:

1) Article loading. The PDFs were loaded using the pdftotext
Python library2. We took care that two-column papers
are correctly processed, and also handled other details
of the text flow like hyphenation.

2) Tokenization into sentences. Each one of the documents
was tokenized into sentences by using the nltk sentence
tokenizer3.

3) Sentence normalization. We preprocessed each one of
the sentences by removing punctuations and numbers.

4) Word tokenization. We use a nltk word tokenizer to
tokenize the sentences. We also lowercase the tokens.

C. Corpus statistics

The processed corpus will be used to train the word em-
beddings. Table III shows several counts of the processed
corpus organised by granularity (number of documents, pages,
sentences, and tokens), the number of unique tokens, and
the average sentence length. Fig. 3 shows the number of
tokens provided by each considered venue to train the word
embeddings.

D. Training details

To train the skip-gram (sgram-mde) model, we rely on
the implementation provided by gensim [14]. The vocabulary
is computed by just considering the words which appear,
at least, 10 times in the corpus. The dimesion of the word
vectors is set to 300 and the window size to 10. We train
the embedings during 20 epochs using the negative sampling
optimization [12].

2https://github.com/jalan/pdftotext
3https://www.nltk.org/
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TABLE III
SEVERAL STATISTICS OF THE MODELLING CORPUS.

STATISTICS COUNT
Number of processed pdfs 2 676
Number of pages 87 666
Number of sentences 1 885 647
Number of tokens 39 601 238
Number of unique tokens 455 991
Average sentence length 21.0 ± 16.99

1e6 3e6 1e7
Tokens

ICMT

SLE

ECMFA

ICGT

MoDELS-C

ER

MoDELS

SoSyM

Ve
nu

e

Fig. 3. Number of tokens provided for each venue.

To train the GloVe model (glove-mde), we rely on the
implementation released by Stanford4. We only consider words
which appear, at least, 10 times in the corpus. The dimension
and window size are also set to 300 and 10 respectively.
Finally, xmax is set to 10 and α to 0.75. We train the GloVe
model during 20 epochs.

The training phase with those hypermarameters and the
modelling corpus took about 20 minutes per model using an
AMD Ryzen 7 3700X 8-Core Processor with 32 GB of main
memory.

V. EVALUATION

The aim of this section is to quantitatively evaluate the
quality of our word embeddings by considering three tasks
in the context of the meta-modelling domain. The goal is to
systematically show the limitation of the current pre-trained
embeddings in these tasks, and to compare the performance
of WordE4MDE models against current pre-trained models. It
is important to note that the three selected tasks (classifica-
tion, clustering and simple concept recommendation) and the
associated ML models are purposely simple, because our goal
is to study the effect of the embeddings.

Firstly, we describe the experimental settings by explaining
the dataset used in the experiments, the two baselines that we
used to compare our approach, and the three tasks considered.
Finally, we report the evaluation results.

A. Dataset

The target dataset in our experiments is the ModelSet
dataset [13], since it is nowadays the largest labelled dataset

4https://github.com/stanfordnlp/GloVe

TABLE IV
MAIN STATISTICS OF THE SUBSET OF THE MODELSET DATASET

CONSIDERED IN THE EXPERIMENTS.

STATISTICS COUNT
Number of models 2 047
Number of categories 48
Avg. number of elements 143.71
Avg. number of classes 19.12
Avg. number of attributes 12.64
Avg. number of references 21.59
Avg. number of packages 1.34

in the context of MDE. It contains ∼ 10k labelled models. In
particular, we take the labelled Ecore models (∼ 5k models).
Previous work [3] showed that the presence of duplication
could bias the results obtaining optimistic results. Thus, in
our analysis, we consider the version of ModelSet without
duplication. To filter duplicates, we use the same procedure
as [3] that employs an adapted version of the algorithm
presented in [17]. From the original dataset, we filter meta-
models whose language is not English, meta-models whose
category is unknown or dummy, and meta-models whose
category contains less than 10 meta-models. Table IV shows
the number of models and categories of the final subset of
the ModelSet dataset together with several statistics such as
average number of elements, classes, etc.

B. Baselines

To understand the potential improvements brought by the
fact that WordE4MDE has been trained on a specific corpus,
we compare against two state-of-the-art word embeddings,
which has been trained using general texts.

Word2Vec Google News (Word2Vec) Word2vec model re-
leased by Google 5. The model was trained on a part of Google
News dataset (∼ 100 billion words). We have considered the
embeddings version that contains 300 dimensions to provide
fair comparisons with respect to Word2Vec4MDE.

GloVe Wikipedia+Gigaword (GloVe) GloVe model released
by Standford 6. The model was trained on Wikipedia 2014 and
Gigaword 5 (∼ 6 billion words). As we do with the previous
baseline model, we have considered the embeddings version
that contains 300 dimensions.

Therefore, the evaluation considers the two baselines and
our two counterpart models (sgram-mde and glove-mde). Ta-
ble V compares several characteristics of these four models:
training corpus, number of the tokens of the corpus, vocab-
ulary size, and the average ModelSet coverage. The average
ModelSet coverage is computed as follows. Firstly, for each
meta-model, we calculate the proportion of its tokens that are
known by a given word embedding model (i.e., that belongs
to its vocabulary). Finally, the average of these proportions
is taken. It is important to highlight that, although modelling
corpus and the vocabulary are several times smaller than the

5https://code.google.com/archive/p/word2vec/
6https://nlp.stanford.edu/projects/glove/
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baselines, the WordE4MDE vocabulary obtains the highest
average coverage.

C. Meta-model classification task

Task. Given a meta-model, this task consists in assigning
it a label. As target label, we use the main category of the
ModelSet dataset.

Example. Given the meta-model presented in Fig. 1, the
system is expected to assign it the label statemachine.

Approach. It is illustrated in Fig. 4. Using each word vector
model, the meta-models of the dataset are mapped to a
vector by computing the average of each vector of the bag-
of-word representation. By doing this, each meta-model is
represented as a vector that can be used to train an ML
classifier. To perform this evaluation, we run (Kernelized)
Support Vector Machine classifiers (SVMs) on top of the
representations. These classifiers aim to find hyperplanes in
the vector space of the representations (if kernels are used, in
the transformed vector space) so that we believe that SVMs
mainly rely on the information presented in the word em-
bedding model. The hyperparmeters that we have considered
are C ∈ {0.01, 0.1, 1, 10, 100} and kernel ∈ {rbf, linear}.
We will report only the results of the best combination of
hyperparmeters. The SVM model is thought to solve binary
classification problems. Thus, to extend it to a multiclass
setting, we use the one-vs-one schema. For each pair of
different labels, a SVM is trained. Then, given a new vector,
we run all these trained SVMs over this vector, and the label
of the majority is the predicted category.

Evaluation metric. To evaluate the performance on the
classifiers built on top of the representations, we use the
balanced accuracy. In particular, given a category c, its recall
is computed as:

Recallc =
Correctly identified models of the category c

Number of samples labelled with c
.

The balanced accuracy is then computed as:

balanced accuracy = AVGC
c=1Recallc.

We use this metric because ModelSet is not balanced and
this measure gives the same importance to each category.
To statistically compare the word embeddings models, the
k−fold procedure is performed and the average of the balanced
accuracy of the k folds is used (we set k = 10 in our
experiments).

D. Meta-model clustering task

Task. Given a non-labelled dataset of models, this task consists
in grouping these models in an unsupervised way.
Example. Given the following set of meta-models, M =
{m1,m2,m3,m4} where m1 models petri-nets, m2 and m3

model state machines, and m4 models relational databases.
The system has to output a partition of M composed by three
clusters: {m1}, {m2,m3}, {m4}.

Word embedding
model

sgram-mde
glove-mde
Word2Vec

GloVe

Support Vector
Machine

statemachine

petri-net

Meta-models

Fig. 4. Meta-model classification approach. For the sake of simplicity, just
the SVM trained with the categories petri-net and statemachine is illustrated.

Word embedding
model

k-means

statemachine

petri-net

Meta-models

graph

sgram-mde
glove-mde
Word2Vec

GloVe

Fig. 5. Meta-model clustering approach. For the sake of simplicity, just the
categories petri-net, statemachine, and graph are illustrated.

Approach. This approach is illustratred in Fig. 5. Using the
same encoding procedure as the meta-model classification,
each meta-model is mapped to a vector by averaging the word
vectors of the bag-of-word representation. On top of these
vectors, the k−means clustering algorithm is run with k equals
to the number of distinct categories of the ModelSet dataset.
Evaluation metric. To evaluate whether the ouput clusters
make sense, we use as the ground truth the categories of
ModelSet. That is, we assess if the output clusters are aligned
with the categories. As evaluation metric we use the V-measure
score defined as the harmonic mean between homogeneity
and completeness. A clustering assignment satisfies the ho-
mogeneity property if each cluster contains only members of
a single class, and it satisfies the completeness property if all
members of a given class are assigned to the same cluster.
The homogeneity, completeness, and V-measure scores are
between 0.0 and 1.0, and the higher the better [18]. To present
the results, we run the k−means algorithm ten times with ten
distinct seeds and report the average of the V-measure scores.

E. Meta-model concept recommendation task

Task. Given the name of the container element, this task
consists of recommending potential names for the contained
elements. In particular, we consider the tasks of recommending
EClassifier names given the EPackage name, recommending
EStructuralFeature names given the EClass name, and recom-
mending EEnumLiteral names given the EEnum name.
Example. We show three examples (one per recommendation
problem):

• Given the EPackage name Statechart, the system should
recommend meaningful EClassifiers names such as Stat-
echart, State, or Transition.



TABLE V
TRAINING CORPUS, VOCABULARY SIZE, AND MODELSET COVERAGE FOR EACH MODEL CONSIDERED IN THE EVALUATION.

MODELS CORPUS # TOKENS OF THE CORPUS VOCABULARY SIZE AVG. MODELSET COVERAGE
Word2Vec Google News ∼100B 3 000 000 0.9132
GloVe Wikipedia + Gigaword ∼6B 400 000 0.9360
sgram-mde/glove-mde Modelling texts ∼40M 55 519 0.9364

• Given the EClass name Transition, the system should
recommend EStructuralFeature names such as in, out,
trigger, etc.

• Given the EEnum name StateKind, the system should
recommend EEnumLiteral names such as initial, final,
or regular.

Approach. This approach is illustratred in Fig. 6. Given the
name of a container, its word vector vq is obtained using a
word vector model. This query vector is transformed into an-
other vector zq = Wqvq using the linear transformation Wq . At
the same time, each one of the vectors in the word embedding
model vocabulary (i.e., the vectors v1, . . . , v|V |) is transformed
through another linear layer Wr obtaining z1, . . . , z|V |. The k
recommendations for the contained elements are the words in
the vocabulary whose transformed vectors (zi) have the highest
dot product with respect to the query vector i.e.,

argtop ki{zi · zq|i = 1, . . . , |V |}.

The matrices Wq and Wr are trained using stochastic gradient
descent and training data from the ModelSet dataset, that
is, training data in the form of pairs (container, contained
elements). More concretely, let us suppose that zq (computed
using Wq) is the transformed query vector, Z = {z1 . . . , z|V |}
is the set of the transformed vectors of the word models’s
vocabulary (computed using Wr), and I = {r1, . . . , rk} ⊂
{1, . . . , |V |} are the indices of the ground truth containment
elements within the vocabulary. During training, the zq is
compared with each one of the vectors in Z through the dot
product, and the softmax activation is applied to map those
products to scores within the interval (0, 1):

s = softmax(Z · zq)

Finally, the model is trained (i.e., the matrices Wq and Wr are
trained) to maximise the following function:∑

i∈I

log sri +

|V |∑
i=1,i/∈I

log (1− sri) .

The aim of the first element of the sum is to increase the scores
of the ground truth names and the aim of the second term is
to decrease the scores of the rest of words in the vocabulary.
Note that the recommendation model is not complex as we
only train linear transformations. Therefore, we believe that
the model rely a lot on the input features provided by the word
models. We extract the pairs (container, contained elements)
for the input dataset and split them into train set and test set.
To provide a fair comparison, we only consider container and
contained concepts that belong to the vocabularies of all the
word models.

Statemachine

?

Query:
statemachine

Word embedding
model

Compute k most
similar vectors

names
states

transitions
initial

...

sgram-mde
glove-mde
Word2Vec

GloVe

Fig. 6. Recommendation approach in the case of recommending EStruc-
turalFeature names.

TABLE VI
META-MODEL CLASSIFICATION RESULTS. AVERAGE BALANCED

ACCURACY OF THE TEN FOLDS FOR EACH WORD EMBEDDING MODEL.

BALANCED ACCURACY
sgram-mde 0.8190
glove-mde 0.8034
Word2Vec 0.7809
GloVe 0.7803

Evaluation metric. As evaluation metric, we use Recall@k
which is computed as:

Recall@k =
|contained elements ∩ k recommendations|

|containment elements|
.

Finally, we take the average Recall@k score for all container
elements in the test set. In our experiments, we consider k =
10.

F. Results

Meta-model classification. Table VI shows the balanced
accuracy for each considered word embedding model. The
sgram-mde model obtains the highest average balanced ac-
curacy. Futhermore, when comparing the performance of the
best WordE4MDE model (sgram-mde) with the two baselines,
the statistical tests (paired Wilcoxon test plus the Bonferroni
correction) reveal statistical differences (p−value < 0.05)

TABLE VII
META-MODEL CLUSTERING RESULTS. AVERAGE V-MEASURE SCORE OF

THE TEN k−MEANS RUNS FOR EACH WORD EMBEDDING MODEL.

V-MEASURE
sgram-mde 0.6783
glove-mde 0.6516
Word2Vec 0.6217
GloVe 0.6211



TABLE VIII
AVERAGE RECALL@10 OF THE TEST SET FOR EACH WORD EMBEDDING MODEL AND RECOMMENDATION TASK.

RECOMMENDING ECLASSIFIERS RECOMMENDING ESTRUCTURALFEATURES RECOMMENDING EENUMLITERALS
sgram-mde 0.4258 0.5626 0.3981
glove-mde 0.4038 0.5241 0.3748
GloVe 0.3494 0.4961 0.3535
Word2Vec 0.2685 0.4740 0.1383

in both comparisons, showing that sgram-mde outperforms
Word2Vec and GloVe models.

From these observations, we can conclude the following:

Meta-model classification results. The WordE4MDE
embeddings are the best in the meta-model classifica-
tion task. In particular, the sgram-mde model is the
one that performs the best.

Meta-model clustering. Table VII shows the average
V-measure score for each considered word embedding model.
The sgram-mde model obtains the highest average perfor-
mance and when comparing such model with the two baselines
using statistical tests (paired Wilcoxon test plus the Bonferroni
correction), we find statistical differences (p−value < 0.01) in
both comparisons.

From these observations, we can conclude the following:

Meta-model clustering results. The WordE4MDE
embeddings perform the best in the meta-model clus-
tering task. Particularly, sgram-mde is the model that
performs the best.

Meta-model concept recommendation. Table VIII shows
the average Recall@10 for each considered word embedding
model and for each recommendation task. We can observe
that the sgram-mde model achieves the best average perfor-
mance in the three tasks. The results of comparing the best
WordE4MDE model with the baselines through statistical tests
(paired Wilcoxon test plus the Bonferroni correction) are the
following.

1) Recommending EClassifiers and recommending
EStructuralFeatures. Sgram-mde outperforms GloVe
(p−value< 0.01) and Word2Vec (p−value< 0.01).

2) Recommending EEnumLiterals. Sgram-mde outper-
forms Word2Vec (p−value< 0.01) but we do not find
statistical differences between sgram-mde and GloVe.

From these observations, we can conclude the following:

Meta-model concept recommendation results.
WordE4MDE is generally the best choice when deal-
ing with the concept recommendation task. In par-
ticular, the sgram-mde model clearly outperforms
both baselines in the EClassifiers and EStructuralFea-
tures recommendation tasks. In the EENumLiterals
recommendation task, the best WordE4MDE model
(sgram-mde) performs very similar to the best baseline
(GloVe).

VI. DISCUSSION

In this section, we discuss more in-depth several aspests of
our experiments, limitations, applicability of the released word
models, and possible opportunities for future work.

A. Findings in the experiments

We have found that the WordE4MDE embeddings (par-
ticularly, the sgram-model) clearly outperforms the baselines
(GloVe and Word2Vec) in meta-model classification and meta-
model clustering. This is caused by the fact that WordE4MDE
models are more specialized in MDE than the two baselines.
We believe that specialization shows up as 1) a specialized
vector space that produces better representations of the words
in the context of MDE, and 2) specialized vocabulary. The
first point can be checked by considering word similarities (see
Table I). The second point can be checked by observing that
WordE4MDE vocabulary obtains the highest average coverage
(see Table V), and by looking at the words in the ModelSet
vocabulary that belong to the WordE4MDE vocabulary but
does not belong to the baselines. For instance, Table X shows
examples of words that belong to the ModelSet dataset and
the sgram-mde model but does not belong to the baselines.
These terms provide a lot of information when classifying or
clustering a meta-model into a category or group. The absence
of important modelling terms in the Glove and Word2Vec
vocabularies could explain why they perform worse than
WordE4MDE.

WordE4MDE embeddings are generally the best choice
when dealing with meta-model concept recommendation. In
particular, it is important to highlight its superiority in recom-
mending EClassifiers and EStructuralFeatures in comparison
with the baselines. One possible interpretation of this result
is that WordE4MDE embeddings encode very well these two
meta-modelling relations. In this context, a natural question
arises: what type of meta-modelling relations are encoded in
the word vectors? By answering this question, we could throw



TABLE IX
APPLICABILITY OF THE WORD EMBEDDINGS.

PREVIOUS WORKS TASK ARCHITECTURE/METHOD SUMMARY
[3], [13] Model classification Several ML models As input features features for several ML.
[2] Meta-model classification Feed-forward NN As input features to feed the neural network.
[19] Meta-model classification CNN As input features to build the 2D matrix.
[15], [20], [21] Model/Meta-model clustering Hierarchical clustering As input features for the clustering algortihm.
[5] Model recommendation LSTM As input features to feed the neural network.
[9] Model recommendation Similarity measure To complement the general knowledge suggestions.
[22] Model recommendation - The recommendation system used in this paper could be integrated in Droid.

TABLE X
SOME WORDS OF THE MODELSET VOCABULARY THAT BELONGS TO THE

WORDE4MDE VOCABULARY BUT NOT TO THE BASELINES
VOCABULARIES.

INTERSECTIONS EXAMPLES
(WordE4MDE − GloVe) ∩ ModelSet expr, stmt, params, pseudostate

statemachine, petrinet, attr
(WordE4MDE − Word2Vec) ∩ ModelSet expr, uml, ocl, unary, stmt, fsm

rhs, lhs, initializer, rdbms

light on how to use word vectors to recommend modelling con-
cepts and which model is the best for recommending concepts
in each recommendation task. We leave the answering of this
interesting question for future work.

In the experiments, we consider the deduplicated version
of the ModelSet dataset. We take that version instead of the
original one beacuse the duplication may bias the results by
obtaining optimistic results. This is specially the case in clas-
sification and recommendation tasks, due to the overlapping
between the training and testing sets. We have also run the
same experiments considering the original version of Mod-
elSet, and the WordE4MDE embeddings still outperform the
baselines leading to the same conclusions but the performance
gaps are lower.

B. Limitations

One shortcoming of our pre-trained models is that the same
conclusions for Ecore do not hold for UML models. Partic-
ularly, we have run several experiments using the ModelSet
UML and we found that the WordE4MDE embeddings do
not significantly outperform the baselines, but perform very
similar to them in the UML classification and clustering
tasks. This is because the WordE4MDE embeddings have
been trained with technical modelling texts and UML models
are many times used to model non-technical domains (e.g., a
shop) or technical domains outside modelling (e.g., embedded
systems for cars). We leave this limitation to be tackled
in future work by increasing the training corpus with more
general text or by devising a system that combines two word
embedding models.

It is worth mentioning several limitations that are intrinsic
to the skip-gram and GloVe models used in this paper. When
a word does not belong to the vocabulary, its embedding
cannot be obtained. This problem is called the OOV (out-of-
vocabulary) problem. We plan to tackle this issue in the future
by training and releasing word vectors that employ subword

information such as [23]. Another problem of these models
is that the output embeddings are not contextualized, that is,
they not reflect the fact that the meaning of a word depends on
the sentence where it appears. To tackle this problem, state-
of-the-art approaches (such as BERT [24], RoBERTa [25],
GPT [26], etc.) pre-train transformers architectures [27]. Thus,
we leave as future work the training of those architectures with
modelling texts and their adaptation to deal with modelling
tasks.

C. Applicability

It is important to note that the main aim of this work is
not to propose an approach for classifiying, clustering, and
recommending concepts but to highlight the limitation of the
current pre-trained word embeddings and to release a word
model that tackles such limitation. The embeddings presented
in this paper are thought to be used as a part of a more
complex system. In this paper, the systems built on top of
the embeddings are, on purpose, simple and rely a lot on
the information already present in such vectors. Thus, we
can conclude that the WordE4MDE embeddings contain more
useful information for the technical (meta-)modelling domain
than the baselines and are a better fit for MDE/ML projects
which require embeddings.

In this sense, we have studied how WordE4MDE embed-
dings could be used to improve systems proposed in previous
works. Table IX shows several published systems where the
embeddings could be used to improve them. The WordE4MDE
embeddings can be used to map bags of words to vectors
in order to feed ML models. Thus, it can be used as input
features in the classification frameworks proposed in [2], [3],
[13], [19], and in the clustering systems proposed in [15], [20],
[21]. The proposed embeddings could also be used to improve
recommendation systems. For instance, they can be used as
input features for the LSTM architecture used in [5] and as a
complement to the general knowledge recommendation engine
of the system proposed in [9]. Finally, although it is not the
main aim of the paper, the recommendation system proposed
in this work, used to assess the quality of the embeddings, is
novel and could be easily integrated in Droid [22].

VII. RELATED WORK

In this section, we review previous works related the use of
ML to address MDE tasks. This section is organised in four
parts: word embeddings in MDE, model classification, model
clustering, and model recommendation.



A. Word embeddings in MDE

Word embeddings have been used to solve MDE problems
in the context of model classification and recommendation.
Specifically, the GloVe embeddings are used by Lopez et
al. [3] to classify the UML models and Ecore meta-models
of ModelSet. They achieve good results in UML but not in
Ecore. The embedding proposed in this paper obtains good
results in the Ecore domain.

In the context of recommendation, Capuano et al. [10] train
a Doc2Vec model over a corpus of reverse-engineered class
diagrams and use that model to recommend class diagram
concepts. The Doc2Vec model could be a research direction
to encode full models into a fixed vector. Thus, we leave the
training of the Doc2Vec model with modelling texts and the
assessment of its performance in the three meta-modelling
tasks as future work.

Burgueño et al. [9] propose a concept recommendation
system that interpolates general knowledge recommendations
and contextual knowledge recommendations. The general rec-
ommendations are provided by using a metric distance over
the GloVe vectors, and the contextual recommendations are
provided by also using a distance metric but with a GloVe
model trained on domain documents. This work and the
recommendation system proposed by Burgueño et al. are
complementary as the WordE4MDE embeddings could be
used as a source of general knowledge.

B. Model classification

The model classification task consists in assigning a label to
a given model. For instance, Nguyen et al. [2] tackles a similar
classification problem as the one considered in this paper but
with a smaller dataset [28] and different labels. Their approach
to perform such classification is a simple neural network with
a TF-IDF encoding scheme. López et al. [13] propose three
model classification tasks: the one that we have tackled in
this work, dummy model detection, and tag inference. The
dummy model detection task consists in identifying models
that contain mostly mock data and were created for testing
purposes (dummy model). This task was tackled by extracting
several counts or features from the models (e.g., number of
elements, number of characters, number of dummy names,
etc.) and running several classifiers on top of these features.
Finally, in the tag inference task, the aim is to assign several
tags to a given model. This task is actually a multi-label and
multi-classification problem. López et al. train a two-layer
neural network using as inputs features TF-IDF vectors. The
WordE4MDE embeddings could also be applied to these two
tasks as a way to encode the models.

C. Model clustering

Given a dataset of models, the model clustering task consists
in generating a partition of this dataset in an unsupervised
way. For instance, Basciani et al. [15] use a TD-IDF approach
and implement hierarchical clustering with common document
similarity measures. Babur et al. propose SAMOS [20], [21],
[29] a model analytics platform. One of its features is model

clustering. Particularly, the authors propose to use the graph
structure of the models by considering n−grams to perform
clustering and this clustering approach is used to detect meta-
model clones [29].

D. Model recommendation

The model recommendation task consists in suggesting
modellers relevant elements for the model under construction.
In this context, to tackle the task of recommending meta-model
concepts, there exist several proposals. For instance, Weyssow
et al. [4] employ a transformer model trained in a masked
corpus of textual meta-models to recommend relevant meta-
modelling concepts. Di Rocco et al. [30] propose MemoRec,
a collaborative filtering recommender system to assist in the
task of generating meta-models. Graph kernels are used in [31]
to provide relevant recommendations to complete the partially
specified meta-models.

Apart from meta-models, other types of artifacts have been
the main target of several proposed recommender systems. For
instance, Di Rocco et al. [5] use a LSTM encoder-decoder
architecture to predict the next edit operation. The authors
evaluate their approach on a dataset of BPMN models. Bur-
gueño et al. [9] and Capuano et al. [10] use word embeddings
to recommend concepts for UML models.

VIII. CONCLUSION & FUTURE WORK

In this paper, we have trained two word embeddings
with a corpus of modelling texts and released WordE4MDE.
Through an extensive evaluation using the ModelSet dataset,
we show that these embeddings outperform state-of-the-art
general-purpose embeddings in three tasks: meta-model clas-
sification, meta-model clustering, and meta-model concept
recommendation. WordE4MDE embeddings are available at
https://github.com/models-lab/worde4mde and can be easily
loaded to tackle modelling tasks.

As future work we plan to tackle the highlighted limitations
in the discussion section. Particularly, we plan to increase the
training corpus to address the generalization capability of our
embeddings in less technical domains (like UML), to study
more in-depth which are the meta-modelling relations that
are encoded in the embeddings, and to tackle the intrinsic
limitations by releasing more word embeddings specialised in
the modelling domain. Futhermore, we also want to incor-
porate the WordE4MDE embeddings in previously proposed
approaches to empirically study if their addition improve the
performance of those systems.
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[22] L. Almonte, S. Pérez-Soler, E. Guerra, I. Cantador, and J. de Lara,
“Automating the synthesis of recommender systems for modelling
languages,” in Proceedings of the 14th ACM SIGPLAN International
Conference on Software Language Engineering, 2021, pp. 22–35.

[23] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the association for
computational linguistics, vol. 5, pp. 135–146, 2017.

[24] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[25] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[26] A. Radford, “Improving language understanding by generative pre-
training,” 2018.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.
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