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ABSTRACT
Current DSL environments lack smart editing facilities intended
to enhance modeler productivity and cannot keep pace of current
developments of integrated development environments based on AI.
In this paper, we propose an approach to address this shortcoming
through a recommender system specifically tailored for textual
DSLs based on the fine-tuning of pre-trained language models. We
identify three main tasks: identifier suggestion, line completion,
and block completion, which we implement over the same fine-
tuned model and we propose a workflow to apply these tasks to
any textual DSL. We have evaluated our approach with different
pre-trained models for three DSLs: Emfatic, Xtext and a DSL to
specify domain entities, showing that the system performs well
and provides accurate suggestions. We compare it against existing
approaches in the feature name recommendation task showing that
our system outperforms the alternatives. Moreover, we evaluate
the inference time of our approach obtaining low latencies, which
makes the system adequate for live assistance. Finally, we contribute
a concrete recommender, named ModelMate, which implements
the training, evaluation and inference steps of the workflow as well
as providing integration into Eclipse-based textual editors.

CCS CONCEPTS
• Software and its engineering → Model-driven software en-
gineering; • Computing methodologies → Machine learning.

KEYWORDS
Recommendation, Meta-modeling, Model-Driven Engineering, Ma-
chine learning
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1 INTRODUCTION
The construction of software models of different kind (Ecore meta-
models, UML models, DSL programs, etc.) is a central activity in
Model-Driven Engineering (MDE) approaches. Therefore, improv-
ing modeling productivity is crucial for the successful implemen-
tation of a MDE approach [19]. However, this is not an easy task,
since modeling effectively requires expertise at various levels. On
the conceptual side, it is important to be able to choose the appro-
priate concepts (e.g., in a Petri net meta-model, typical concepts
that may be modeled are Net, Place, Transition, etc.); at the syntax
level, the modeler needs to construct models following the rules
of the modeling language; and at the technological level, the mod-
eler needs to use a concrete tool which should provide features to
faciltate the different modeling tasks.

In this context, building recommender systems is a well-known
approach to achieve the objective of improving developer productiv-
ity when using a tool or a language. Thus, integrated development
environments (IDEs) make pervasive use of recommender systems
of different types [24] and the trend is to use the latest develop-
ments in Artificial Intelligence (AI) and Machine Learning (ML) to
boost such recommender systems. In the modeling setting, some
recommender systems for modeling tools have been proposed and
there is recently a renewed interest on them due to the availability
of ML techniques [26]. However, the current state-of-the-art of
recommender systems for modeling tools present a number of limi-
tations. First, current recommender systems are built on top of small
amounts of data (e.g., small datasets for training and/or evaluation)
which limits their applicability. Also, most recommenders are con-
ceived specifically for one kind of language (typically Ecore class
diagrams) and it is not clear how to adapt them to other modeling
languages. With respect to its integration into modeling environ-
ments, they have insufficient performance (or it has not been tested)
to be used interactively and they do not integrate well with tex-
tual languages since they assume that the model is well-formed
in memory. Moreover, the proposed models are not released in a
way that could be easily deployed (e.g., a plug-in for a modeling
language). In general, it can be claimed that current approaches are
not mature enough to be used in real scenarios.

To address these shortcomings, in this paper we propose an
approach to build recommender systems for textual modeling lan-
guages using pre-trained language models (PLMs). We identify
three editing tasks which are supported by our system, namely
identifier suggestion, line completion and fragment completion. We
describe a general end-to-end process which can be applied to any
textual modeling language, and we discuss the different elements
involved in the construction of such system in practice, including
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how to handle dataset construction, tokenization, inference, evalua-
tion, etc. We apply this process to three particular DSLs: Ecore with
Emfatic notation, Xtext and a custom DSL to describe domain enti-
ties. We fine-tune several open source, pre-trained models using the
ModelSet dataset [13] and the MAR dataset [14, 15] to build models
for these DSLs. We evaluate our proposal from several dimensions.
First, we analyse the performance of each model in each of the iden-
tified tasks. Then, using the best models we compare against three
other approaches in the literature, EcoreBert [31], MemoRec [6]
and a variant of [4] by setting setup a benchmark for the “feature
name” recommendation task in Ecore models. Moreover, we com-
pare against the option of prompting OpenAI GPT3.5 obtaining
comparable results. Finally, we assess whether our system is fast
enough to be used in practice. Altogether, we make the following
contributions:

• We propose an approach to build smart recommendation
facilities for textual modeling languages based on pre-trained
language models and identify three main editing tasks.

• We apply our approach on three DSLs using multiple state-
of-the-art pre-trained models, achieving good results.

• We evaluate and compare our approach against previous
proposals showing that it generalizes better.

• We contribute a tool called ModelMate1, offering features
for building textual datasets and for fine-tuning and evaluat-
ing models. Additionally, ModelMate can be integrated with
Eclipse-based editors through a plugin and a web server.

Outline. The rest of the paper is organized as follows. In Section 2,
we provide the background information. In Section 3, we present
our approach to build recommender systems for textual modeling
languages and Section 4 describes how ModelMate is used in prac-
tice. Section 5 reports the evaluation results. Section 6 discusses
the related work and Section 7 concludes.

2 BACKGROUND
2.1 Pre-trained language models
Pre-trained language models (PLMs) are neural networks that fol-
low the transformer architecture [28], and they are trained with a
large corpora to perform a language modeling task i.e., predicting
a word given its surrounding context. Depending on their archi-
tecture, PLMs can be classified into three categories: encoder-only,
decoder-only, and encoder-decoder [18]. In this paper, we only deal
with decoder-only models as they are naturally designed to be used
in the autocompletion tasks. This kind of PLMs are pre-trained in
an autoregressive way, that is, predicting the next token given the
preceding ones. Examples of decoder-only models include the GPT
models [3, 23], CodeGPT [16], CodeGen models [20], among others.

Twomethods exist for tuning a PLM to perform a specific task [18].
In-context learning [9] involves introducing a prompt into the PLM
in order to steer it to solve the target task. However, this method
is effective only for very large PLMs [30] (with several billions
of parameters). The alternative method is fine-tuning [18], which
entails further training the PLM using a dataset specific to the task
at hand. Fine-tuning is particularly effective for smaller PLMs and

1ModelMate is available at https://github.com/models-lab/model-mate

is commonly employed when a task-specific dataset is accessible.
The core of ModelMate involves fine-tuning small PLMs.

2.2 Recommendations in textual DSLs
To create models or meta-models, a modeler needs to use some kind
of editor, which can typically be graphical (e.g., arrows and boxes or
a tree editor) or textual. Thus, to enhance modeler productivity it is
necessary to provide recommendation facilities integrated in such
editors. In particular, the autocompletion facility is a key feature
in modern IDEs. However, this is lacking in the case of modeling
environments.

The techniques proposed in the literature to build recommender
systems for non-textual DSLs cannot be easily adapted to be used
for textual DSLs. The main reason is that such techniques typically
assume that they have access to the complete model in memory,
which is not the case in this scenario. In a textual editor when the
user begins to write a new construct (e.g., class I), the DSL parser
alone is not able to process the complete text and obtain an in-
memory representation of the model. Although error correction
techniques could be used to mitigate this issue, they are typically
not available for DSLs. Instead, for textual languages we can take
advantage of current advances in language models, which are able
to understand text sequences of new languages if they are fine-
tuned, which is the focus of our approach.

2.2.1 Xtext, Emfatic and Domain entities. In this work we apply
our approach to three DSLs which showcase different features and
challenges. These languages are Emfatic2, Xtext3 and a variant of
the Domain entities DSL available in the Xtext distribution4.

Xtext is a DSL to build textual DSLs. It is based on grammatical
rules annotated with the meta-model elements that are manipulated
(generated or assigned). The following listing shows an excerpt of
the Xtext grammar to specify the syntax of the language to describe
domain entities (i.e., the “Domain-Model example”).
DomainModel: elements+=AbstractElement* ;

AbstractElement: PackageDeclaration | Entity ;

PackageDeclaration: 'package' name=QualifiedName

'{' elements+=AbstractElement* '}';

Entity: 'entity' name=ValidID ('extends' superType=Entity)?

'{' features+=Feature* '}';

Emfatic is a textual DSL to specify Ecore models. It is built on top
of the Ecore meta-model and it provides transformations from .ecore
files to the Emfatic syntax, and vice versa. The following listing is
an excerpt of a Petri net meta-model specified with Emfatic. Em-
fatic distinguishes between attributes, references and containment
references with the attr, ref and val keywords, respectively.
package petrinet;

class PetriNet {

attr String[0..1] name;

val Node[*] nodes;

...

}

class Node {

ref PetriNet[1] net;

}

2https://eclipse.dev/emfatic/
3https://eclipse.dev/Xtext/
4The “Domain-Model example” discussed in https://eclipse.dev/Xtext/documentation/
102_domainmodelwalkthrough.html

https://github.com/models-lab/model-mate
https://eclipse.dev/emfatic/
https://eclipse.dev/Xtext/
https://eclipse.dev/Xtext/documentation/102_domainmodelwalkthrough.html
https://eclipse.dev/Xtext/documentation/102_domainmodelwalkthrough.html
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The Domain entities DSL syntax ressembles Emfatic (as shown
in the Xtext grammar shown above). The main difference is that
features are defined with the syntax name : type and that it allows
operations with a Java-like body.

2.2.2 Recommendation tasks in textual DSLs. A key aspect is to
identify which are the recommendation tasks that make sense for a
given DSL. In this work, we consider three recommendation tasks,
which are illustrated in more detail in Fig. 1 using Emfatic.

(1) Fragment completion. Given the previous context (i.e., the
text before the cursor), the system completes the current
fragment by adding a sequence of tokens up to a certain
place. In the example, the user has written class PetriNet { and
the system proposes completing the rest of the class with
several attributes and references. This is the most general
type of completion, since it can be triggered anytime in the
editing process.

(2) Line completion. In this case, the user is at the beginning of a
line and the system generates a full line. In the example, the
user is creating a class and the system generates a complete
attribute which includes its type, cardinality and name. To
be more effective, the editor should use this mode for lan-
guage constructs which are typically described in a single
line (i.e., when a line represent a complete construct in the
target language). For instance, Emfatic features (attributes
and references) are normally written in a line.

(3) Identifier suggestion. This task aims at helping the user in
selecting proper identifiers (i.e., a naming task) and to select
existing names to reference existing concepts. In the example,
the system generates a list of proposed names for the type of
the reference. Since the Place class has already been defined,
it appears first in the list. Other suggestions like Transition
have not yet been defined by the user, who may select them
and later create the corresponding class.

These tasks can be mapped to other DSLs. For instance, in Xtext,
the main construct is the grammatical rule. The user might be
interested in obtaining recommendations about rule names (e.g.,
Entity), about property names or references to other rules (e.g., name
and QualifiedName in name=QualifiedName) and about string literals
(e.g., ’package’). In all cases the system should be able to recommend
a specific token depending on the cursor position. Another kind
of recommendation would be to predict a complete fragment. For
instance, after writing Entity, the user might be interested on getting
a completion for the rest of the rule (up to ’;’) or just a complete
line.

In the following section we describe our approach to support
these tasks in textual DSLs.

3 APPROACH
Our approach is based on the use of pre-trained language models to
build a recommender system for textual modeling languages. First,
we address the question of the availability of datasets. Afterwards,
we explain the method used to fine-tune a PLM to understand the
textual syntax of a new DSL. Then, we describe how the inference
is performed and finally, we explain how to evaluate these models.

@namespace(uri=“http://pn”, prefix=“pn”)
package petrinet;

class PetriNet {
attr String[0..1] name;
val Node[*] nodes;
val Transition[*] transitions;

}

Generated
fragment

(1)

@namespace(uri=“http://pn”, prefix=“pn”)
package petrinet;

class PetriNet {
attr String[0..1] name;
val Node[*] nodes; Generated line

@namespace(uri=“http://pn”, prefix=“pn”)
package petrinet;

class Place {
attr String[1] name;

}

class PetriNet {
val

(2)

(3)

Place

Transition

Arc
suggestions

Figure 1: Recommendation types exemplified with Emfatic.
Gray text is the generated completion. (1) Fragment comple-
tion, (2) Line completion, (3) Identifier suggestion.

3.1 Dataset availability scenarios
A key aspect of our approach is that, for each different DSL, a new
model needs to be fine-tuned to learn the DSL syntax. However, the
scope of DSLs is typically small since they are focused on a specific
community of users whose size is way less than the communities of
general purpose languages. Therefore, the amount of training data
available is expected to be small as well. Moreover, when a new
DSL is created it suffers from the well-known cold-start problem of
recommender systems [24]: since the DSL has not been used yet,
there are no users and therefore there is no training data to build a
first version of the recommender system. The consequence is that
most DSLs cannot profit from smart assistants from the beginning.
In this context, given a DSL, we consider three different scenarios
depending on the availability of datasets.

Textual dataset available. When there is a dataset of textual files
already available, our approach is applicable almost directly without
any intermediate steps (see Sect. 3.2). We evaluate this scenario
using Xtext, which is popular enough to allow us to find an adequate
amount of public files (i.e., in GitHub) to create a dataset.

Serialized dataset available. In this case, we do not have a textual
dataset but there exists a dataset of serialized models (e.g., in XMI)
for the target DSL. Thus, the dataset is fully compatible with the
target textual syntax which is based on exactly the dataset meta-
model. For example, notations like Emfatic or OclInEcore simply
add a textual syntax to an existing modeling language (i.e., Ecore).
In this case, we only need to use the serializing facilities of the tool,
if available, or build a simple code generator.

No dataset available. This is the most frequent scenario when a
new DSL is being developed. To tackle this issue we propose to
use a dataset of another modeling language, which is semantically
compatible, and convert the models in the dataset to the required
textual syntax. For instance, if one is developing a DSL for repre-
senting some kinds of business processes, it would be possible to
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use datasets of UML Activity Diagrams or BPMN. Then, the require-
ment is to be able to construct a model-to-text transformation from
the dataset to the DSL notation.

In this work we build one recommender for each of these cases.
For the first scenario, we have built a recommender system for
Xtext. For the second case, we have chosen Emfatic. For the third
case, we reuse the Domain entities DSL from the Xtext tutorials.

3.2 Methodology
Given a modeling language with an associated textual notation, the
methodology that we use to build a recommender system has the
following steps (which are also illustrated in Fig. 2).

Dataset selection. A dataset with enough examples in textual
syntax needs to be provided. Depending on the DSL, one of the three
strategies described in the previous section needs to be followed.

Duplicate removal. It is important to remove duplicates from the
dataset not only to avoid evaluation bias [2] but also to improve
the training of the PLMs [12]. To this end, we implement a variant
of the duplication detection algorithm by Allamanis [2] adapted to
software models.

Text generation and tokenization. For every model, we need to
create its textual representation. We employ the tokenizer of the
DSL to extract the sequence of tokens from the original text (or a
code generator if we use plain models) and add three special tokens
to this sequence: <s> (start of sequence), </s> (end of sequence), and
<EOL> (end of line). For example, the following listing illustrates
the tokenized serialization (enhanced with the special tokens) of
an Emfatic model. We perform this preprocessing for two primary
reasons. First, similar preprocessing steps are conducted in popu-
lar code understanding benchmarks like CodeXGlue [16]. Second,
from an implementation perspective, this format greatly facilitates
running the inference and evaluation of PLMs. For instance, the
generation of lines concludes upon encountering the <EOL> token.
<s> package petrinet ; <EOL> class PetriNet { <EOL>

attr String [ 0 ] name ; ... } </s>

Model selection. ModelMate is agnostic to the selected language
model and the fine-tuning technique. However, in this work, we
only consider models with less than one billion parameters. It is
important to take into account that, in the same way as the devel-
opment cost of a DSL needs to be modest [17], the training and
inference cost of its associated recommender system probably also
needs to be modest. The choice of relatively small pre-trained mod-
els have several implications like the possiblity of training them in
commodity GPUs and the possibility of getting fast recommenda-
tions. The details of the chosen models are explained in Sect. 3.3.

Training. For training the models, we adopt a train-validation
setup, leveraging the validation set to implement early stopping
and mitigate potential overfitting of the PLM. Following each epoch,
we assess themodel’s performance using the validation split. Should
the model exhibit deteriorating performance on this split, training is
stopped before reaching the maximum number of epochs (iterations
over the training dataset) and the best model checkpoint is saved.

Evaluation. The final step is to evaluate the performance of the
chosen models in order to understand if they perform well for the

target DSL, for instance, to determine if additional training data
is needed or which is the best model to be deployed. The details
about how to perform this evaluation are explained in Sect. 3.5 and
are applied in practice in Sect. 5.

3.3 Selected pre-trained language models
In our implementation we employ PLMs available in HuggingFace
Hub, but conceptually it is possible to use any PLM. In particular,
Table 1 presents the PLMs considered in this study, which include:

• GPT2 family [23]. Released by OpenAI, these models were
trained using 40GB of text data (WebText). For this study, we
focus on three checkpoints: GPT2 (124M parameters), GPT2-
M (355M parameters), and GPT2-L (774M parameters).

• DistilGPT2 [25]. HuggingFace released this compressed ver-
sion of GPT2, employing 82M parameters. It was pre-trained
through knowledge distillation, with GPT2 serving as the
teacher model. The dataset used in the training is an open-
source version of the WebText corpus.

• CodeParrot-small5. This 110M parameter model was pre-
trained using an extensive corpus extracted from GitHub,
encompassing data from nine programming languages.

• Codegen family [20]. Salesforce released a series of mod-
els of 350M parameters. Codegen-nl was pre-trained on
The Pile [10] containing both natural language and code.
Codegen-multi was initialized with the Codegen-nl check-
point and trained on a diverse corpus containing multiple
programming languages from GitHub. Finally, Codegen-
mono was initialized with the Codegen-multi checkpoint
and trained using a Python corpus.

PLM Parameters Pre-training data
GPT2 [23] 124M WebText [23]
GPT2-M [23] 355M WebText [23]
GPT2-L [23] 774M WebText [23]
DiltilGPT2 [25] 82M OpenWebText [22]
CodeParrot-small-multi 110M CodeParrot dataset
Codegen-nl [20] 350M The Pile [10]
Codegen-multi [20] 350M BigQuery [20]
Codegen-mono [20] 350M BigPython [20]

Table 1: PLMs considered in ModelMate.

3.4 Inference
Given a fine-tuned model and an input preceding context, the new
tokens are generated until a specific condition is reached. For ex-
ample, if we are targeting Emfatic and we intend to recommend
fragments (as depicted in the first case of Fig.1), token generation
continues until the token } is obtained. For generating new lines
(as in the second case of Fig.1), the termination token is the special
<EOL> token. Finally, if the objective is to generate the next token,
generation stops when a blank space is produced.

5https://huggingface.co/codeparrot/codeparrot-small-multi

https://huggingface.co/codeparrot/codeparrot-small-multi
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Dataset Textual
dataset

(tokenized)

yes
Deduplicated

dataset

train

validation

test

Pre-trained model

Model

Fine-tuning

Evaluation)

Duplicate
removal

Generate
text

Tokenize

Is text-based 
dataset?

no

Results

Figure 2: Training and evaluation workflow of ModelMate.

To provide more than one recommendation and to ensure de-
terministic inference, we use the beam search generation proce-
dure [11], which approximately outputs the top-𝑘 most likely se-
quences according to the fine-tuned model given the input context.
For token inference, we set 𝑘 = 5 to generate five suggestions
(which also allows us to compute the MRR over these suggestions).
For lines and blocks, we use 𝑘 = 2 because in practice we only
require one suggestion and in our initial experiments we found no
significant improvement with higher values of 𝑘 (increasing 𝑘 often
results in the same first line/block). Moreover, a lower 𝑘 increases
inference speed.

3.5 Task evaluation procedure
The training of our models was performed using the complete
models in tokenized, textual syntax. However, in order to evaluate
all three of our tasks, we need to preprocess the original test set to
create other tests sets suitable for evaluating each concrete task. In
all cases the new test set is composed by a list of pairs formed by
context and expected, which contain the input to the model and the
expected ground truth, respectively. Next, we show how the test
set is derived in order to evaluate the system in each task.

Fragment completion. For each DSL we need to identify the block
delimiters. In Emfatic and the domain entities DSL they are { and }.
In Xtext we use : as the block start (to have the rule name as context)
and ; to indicate the end of the rule. Thus, for every block start
token (e.g., {) in each model, we store as the context the prefix up
to such token and the expected fragment consists of the sequence
of tokens until the first block end token (e.g., }).

Line completion. For every <EOL> token, the context is the text before
that (including the <EOL>) and the ground truth is the following
text until the next <EOL>.

Identifier suggestion. We need to match in the text the identifiers
that are of interest for each DSL. For instance, in Emfatic we are
interested in identifiers that follow some keywords, like class <class-
name> and attr <type-name>. Thus, we capture the context before
the identifier (which includes the keyword) and the identifier is the
ground truth. We also support regular expression matching to han-
dle more complex cases like name : type in which the identification
of the name depends on the appearence of : and type as tokens.

Next token prediction. We also consider an additional evaluation to
have a general, rough view of the performance of the trainingmodel,
independent of the concrete tasks. For every token, we capture the

text up to a given token (excluded) as the context and that token is
the expected predicted value. We ignore special tokens like <EOL>.

The new test sets are very large since they include all possible
instances of each case for each sample in the test set. For instance,
in the case of next token completion this means that the amount of
tests is now the number of tokens per sample, in the case of line
completion the number of lines, etc. Using the full versions of the
datasets would make running evaluation impractical. Therefore, we
introduce a parameter to sample the number of instances of each
kind to reduce the size.

3.6 Evaluation metrics
Now we briefly present the evaluation metrics for each of the eval-
uation tasks that we have defined in the previous version.

Fragment completion metric. To evaluate the accuracy of generated
fragments we use the smoothed BLEU score [21, 27]. This metric
is widely used in machine translation and text generation tasks. It
belongs to the interval [0, 100] (the greater the better) and measures
the similarity between the predicted text and the expected text
by computing the n-gram overlapping. More precisely, BLEU is
calculated as

𝐵𝐿𝐸𝑈 = 𝐵𝑃 · exp
(
𝑁∑︁
𝑛=1

𝑤𝑛 log𝑝𝑛

)
,

where BP is a brevity penalty that lowers the score for very short
completions,𝑤𝑛 is the weight given for the n-gram precision (it is
normally set to 1

𝑁
, 𝑁 = 4), and 𝑝𝑛 is the n-gram precision.

Line completion metric. In this case, we follow the same approach
as in CodeXGlue [16] and we use Levenshtein distance and Exact
Match (EM) as evaluation metrics. Levenshtein distance is an edit
similarity metric that is calculated based on the minimum number
of insertions, deletions, and substitutions needed to transform one
string into another. It ranges between 0 and 100, and the higher
this value is, the more similar the strings are. EM calculates the per-
centage of exact matches between predicted outputs and expected
outputs.

The rationale for using different metrics for fragment and line
completion is the following. A line is typically a small piece of text
(e.g., 32 tokens at most in our experiments), whereas a fragment is
normally composed of several lines. Therefore, measuring EM and
edit similarity is more representative for line completion.

Identifier suggestion. In this task, we are generating 5 different pre-
dictions, so in order to take into account the position in which
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the correct prediction is, we use the𝑀𝑅𝑅@𝑘 [16] metric with 𝑘=5.
Given a list of 𝑘 suggestions ordered from highest to lowest rele-
vance, if the expected suggestion (the ground truth) is in position
𝑖 , it gets scored 1

𝑖 , otherwise 0. The 𝑀𝑅𝑅@𝑘 is calculated as the
average of all these scores for all the instances in the test set and
the aggregated score is within the interval [0, 100] (the greater the
better).

Next token prediction. In this task we use the accuracy as evalu-
ation metric, measured as the proportion of predictions match-
ing the ground truth. This metric resembles the one used in the
CodeXGlue [16] benchmark for token-level code completion.

4 MODELMATE IN PRACTICE
This section briefly describes the facilities provided by ModelMate
and its implementation. To build datasets we provide two main
facilities in the form of Java APIs. The first one is a simple API
to detect duplicate models which is based on extracting relevant
n-grams (i.e., strings) from each model in a dataset [2]. The second
API allows us to implement simple model-to-text transformations
which conforms to the CodeXGlue format.

For the training and evaluation of the models, it provides a
Python library that allows the user to setup the training and evalua-
tion pipeline. The library is built on top of Hydra (for configuration)
and HuggingFace Transformers (for fine-tuning). Given a new DSL
for which we want to train a model, the user just needs to create a
configuration file for the dataset and run the training and evaluation
commands.

To integrateModelMate in textual editors we provide a dedicated
web-server which loads the trained model and provides a REST
API with endpoints to access the three recommendation tasks. The
web server can be run locally or in a remote server with a more
powerful GPU.

ModelMate is currently available for Eclipse-based editors through
a plug-in. The plug-in provides built-in support for fragment com-
pletion for any textual editor by setting up a connection with the
web server. Given a new DSL the only thing that needs to be done is
to implement an extension point to register the file extension and to
provide a tokenizer. For identifier suggestions it is needed to extend
the DSL editors specifically since a special content assist processor
for the DSL needs to be installed. To showcase this scenario, we
have extended the Emfatic editor to suggest identifiers depending
on the current cursor position.

Figure 3 shows the ModelMate plug-in for Eclipse and Emfatic.
As the developer types, the plug-in sends the text before the cur-
sor to a background thread which queries the web server. This
is done asynchronously and only when the user has stopped typ-
ing for a few milliseconds. The suggested fragment is shown in
1 and can be applied with a keywbord shortcut. In addition, by
pressing Ctrl+Space, the default Eclipse content assist is shown but
the identifier suggestions from ModelMate are added at the begin-
ning (see 2 ).

5 EVALUATION
In this section we evaluate our approach from several dimensions.
First, we evaluate the performance of ModelMate for the three
recommendation tasks with three different DSLs. Then, we compare

1

2

Figure 3: ModelMate plug-in for Emfatic. (1) Fragment com-
pletion suggestion. (2) Identifier suggestion.

ModelMatewith other model recommenders on a common task. We
also compare it against a propietary large language model (LLM),
namely OpenAI GPT 3.5. Finally, we report the inference time of
our approach. The ModelMate framework, including the Eclipse
plugins, and the scripts and instructions to replicate the evaluation,
are available at https://github.com/models-lab/model-mate.

5.1 Performance in recommendation tasks
We evaluate our approach from the point of view of the perfor-
mance of the trained models with respect to the tasks presented in
Section 2.2. To this end, we have fine-tuned the models described in
Section 3.3 using the procedure described in Section 3.2. This evalu-
ation corresponds to what a DSL developer would do to determine
which pre-trained model to use for a given DSL and to understand
the expected performance of such models.

The models have been fine-tuned in a machine with an NVIDIA
RTX A5000 GPU with 24 GB of memory in about 2 hours each,
on average. The main training parameters include context length,
which we set to 512 tokens to make sure that all models fits in the
GPU memory, the learning rate is set to 5 × 10−5 and we train up
to 10 epochs.

The datasets used for training themodels for each DSL are shown
in Table 2. Each dataset is explained in the corresponding section.

Dataset #Models
(Raw)

#Models
(Dedup)

#Models
(Filtered) Applied to

MAR/Ecore 67, 322 8, 541 8, 541 Emfatic
MAR/Xtext 5, 061 2, 762 2, 762 Xtext
ModelSet 10, 595 5, 568 1, 204 Domain DSL

Table 2: Datasets used for training the recommenders for the
three DSLs.

5.1.1 Emfatic. To apply our training pipeline to Emfatic models
we have used the dataset of Ecore models available in the MAR
search engine [15], specifically the ones crawled from GitHub. After
removing duplicates the dataset contains 8, 541 models. We have
converted these models to text using a custom serializer. The reason
is that the default Emfatic serializer tends to generate too many

https://github.com/models-lab/model-mate
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keywords for default values which clutter the input and it is not
representative of real Emfatic texts.

The results of the evaluation are shown in Table 3. We use the
accuracy for next token prediction (column 2) as the primary metric
to sort the table. For the identifier recommendation task we consider
class names, super class names (after extends), feature types which
can be for attributes (attr), plain references (ref) and containment
references (val), and feature names (in Emfatic they go after the
cardinality). For the line completion task, we consider the com-
pletion of full lines (e.g., the contents from one line break to the
next line break). For the fragment completion task, we consider the
completion of the body of a class (e.g., class PetriNet { block-content }).

As can be observed the values are relatively high, meaning that
in many cases the system provides relevant suggestions. For at-
tribute types the MRR is higher than for ref and val because the
amount of primitive types is limited. For super class names the
MRR is also high because abstract classes tend to be added at the
beginning of the file (i.e., they appear in the context of the comple-
tion). For line and fragment completion the results indicate a good
performance [27].

Regarding the performance of the pre-trained models, the code-
gen family outperforms the GPT2 family. We can also observe that
in the GPT2 family, the larger the model in terms of number of
parameters the better the results. However, the model that stands
out is codeparrot since it is a relatively small model which is on par
with the larger models.

5.1.2 Xtext. To build a dataset for Xtext we took the .xtext files
available in MAR, which we deduplicated to obtain a dataset of
2.762 Xtext files. Then, we applied the Xtext tokenizer to render the
final textual dataset.

For Xtext we evaluate next token prediction accuracy, line com-
pletion and fragment completion, but we do not apply identifier
suggestion because Xtext has few keywords over which “anchor”
the evaluation of specific tokens. Instead, Xtext rules are just a
sequence of grammar elements and therefore the basic, next token
prediction task is more useful in practice (see Xtext example in
Section 2.2).

For the sake of brevity, we only report the results of one model
of each family. The results are shown in Table 4. In this case, the
results are lower than in Emfatic because in Xtext the amount of
non-keyword tokens that the model must predict is very high.

5.1.3 Domain entities DSL. This is a simple language to describe
domain entities in a software project. Although in the surface it is
similar to Emfatic, it showcases some differences worth studying.
On the one hand, the goal of the DSL is not meta-modeling, but
software modeling and therefore it should be trained on a dataset
containing domain models. On the other hand, class features are
specified with the syntax name : type and there is no special keyword
to introduce the kind of feature (attribute or reference). This means
that inference becomes more difficult for features names.

The construction of the dataset for this DSL is slightly more in-
volved. We use both Ecore and UML from the ModelSet dataset [13].
After removing duplicates, for Ecore we only keep the models la-
belled with domain-model and for UML we only used the models
containing diagrams with at least 5 classes. The rationale is to
make sure that the final dataset is about domain modeling rather

than meta-modeling (as it is the case of the Emfatic dataset). After
filtering, the final dataset only contains 1, 204 models. Then, we
convert these models to text using a custom serializer. Since this
DSL support operations with a Java-like body, we generate default
return values for the operations according to the return type (e.g.,
return 0 if the return type is an integer).

The results are shown in Table 5. The accuracy in next token
prediction is higher than in Emfatic, possibly because the body
of the operations is very repetitive (this also explains the high
value of the BLEU metric). On the other hand, the MRR for entity
names is close to the results for Emfatic class names. For operation
names, the MRR is a bit low because the models do not follow a
consistent naming convention. Regarding feature names and types,
it is noteworthy that the results now show higher values for types
compared to names, which is contrary to Emfatic.

5.2 Comparison with model recommenders
The goal of this evaluation is to understand whether ModelMate is
able to outperform existing model recommenders in a task which
could be addressed by all of them. Unfortunately, we have not found
any model recommender focused on the fragment and line comple-
tion tasks. Instead, as shown in Table 9, current recommenders are
focused on predicting identifiers. Therefore, we use an adaptation
of our identifier suggestion task.

We have selected model recommenders published in the liter-
ature which can be used directly or with minor adaptations to
perform the identifier recommendation task. In particular, we select
three works to compare with: EcoreBert [31], MemoRec [6] and the
approach in [4] (named here KNN/Glove), which we have reimple-
mented and adapted since the original tool is not replicable. We
apply these recommenders to the task of suggesting feature names
in Ecore meta-models because it is well supported by all of them.
The task is as follows: given an Ecore meta-model with one feature
removed, predict the name of the removed feature. This means that
the tools are allowed to use the rest of the model as context.

We reused the original EcoreBertmodel “as is”, whichwas trained
with the MAR/Ecore dataset. Hence, we train MemoRec and KNN/-
Glove with the MAR dataset to make sure that they have seen the
same training data as EcoreBert. For ModelMate we used as target
syntax the one of Domain entities DSL since it adapts well to the
task of only predicting the feature name. We used the codeparrot
model for this evaluation since it achieved nearly the best results
in the previous evaluations, despite being only a third the size of
the top-performing model in the previous evaluations.

We perform the evaluation with two datasets: the Ecore models
from ModelSet and the Ecore models from GenMyModel available
in MAR. For both datasets we apply a filtering pipeline in which we
first remove duplicates, then remove models with less than 2 classes
(i.e., small models) and finally remove models which are likely not
using English (to perform a fair comparison with MemoRec which
cannot generalize to non-english languages). The ModelSet dataset
is a subset of the MAR/Github dataset and thus it is expected that all
tools perform well over this dataset. However, the models provided
by GenMyModel have not been seen in the training and allows us
to study the generalization capabilities of the models.
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Identifier Suggestion Line Fragment

Model Accuracy class name super name attr. type ref. type val. type feature name EM Edit Similarity BLEU

codegen-mono 69.10 45.03 78.28 77.24 52.91 39.22 59.35 14.27 50.51 31.21
codegen-multi 69.07 45.19 78.33 77.73 53.45 39.03 59.36 14.37 50.81 31.32
codeparrot 68.64 44.25 77.65 77.72 50.84 37.79 58.35 13.90 48.63 30.67
gpt2-large 68.52 42.29 75.41 76.60 50.58 36.87 57.51 13.24 48.53 29.93
codegen-nl 68.02 41.55 76.31 75.75 50.21 35.87 57.23 12.06 46.04 29.11
gpt2-medium 67.65 39.97 74.24 75.91 48.34 33.66 54.83 11.63 44.36 28.39
gpt2 65.83 35.19 70.78 74.49 42.15 28.77 51.07 9.16 41.76 26.15
distil-gpt2 64.02 29.08 66.30 73.15 36.65 23.58 47.02 6.48 37.19 24.09

Table 3: Results of the evaluation of different models for Emfatic.

Line Fragment

Model Accuracy EM Edit Similarity BLEU

codeparrot 60.13 22.38 43.90 23.07
codegen-multi 58.75 21.41 42.02 22.81
gpt2 54.99 20.32 38.04 17.57

Table 4: Evaluation results for Xtext.

For each sample, the recommenders output up to 5 suggestions.
We use as metrics the Mean Reciprocal Rank (MRR@5) and the
Success Rate (SR@5), which is similar to accuracy but allowing to
match any of the 5 results.

Table 6 shows the results obtained in the feature name recommen-
dation task with the four approaches. For ModelSet both MemoRec
and KNN/Glove obtain very good results, but ModelMate is rel-
atively close. However, using the GenMyModel dataset (whose
models have not been seen in training) the results show that Mod-
elMate outperforms the other approaches by more than 100%. The
rationale for this discrepancy in the results is thatModelMate is able
to generalize, which is a key property for a recommender system.

5.3 Comparison with LLMs
Large Language Models (LLMs) are PLMs with several billions of
parameters. LLMs exhibit in-context learning capabilities, which
means that given some examples of the target syntax in the prompt,
they may be able to generalize to other examples. Therefore, an
alternative approach to our proposal is to directly use an LLM by
showing some examples in the prompt.

In this part of the evaluation we want to compare the perfor-
mance of an LLM in the three proposed tasks against our approach.
In our case, we show in the prompt three meta-models selected
randomly from the dataset in Emfatic format and the task proposed
to the LLM is to complete a partial meta-model. We select OpenAI
GPT-3.5-turbo-instruct which is the best model for text completion
tasks at the time of writing this article6. We set the temperature
to 0 and the number of generated completions to 1. Depending on
the type of task, we post-process the result to obtain the following
token, line or block respectively. Given that this evaluation involves
API usage costs, we created random sample of the test set by fixing
6For many basic tasks, the difference between GPT-4 and GPT-3.5 is not significant, as
noted in https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo.

the number of samples to 1, 000 in the case of fragments and lines,
and to 200 for each kind of identifier completion. We also re-run
ModelMate over the same sampled dataset with three of the most
significant models.

Table 7 shows the results of the evaluation. As it can be observed,
ModelMate and GPT 3.5 perform similarly in the identifier sugges-
tion task. For line completion, GPT 3.5 outperforms ModelMate,
whereas ModelMate surpasses GPT 3.5 in fragment completion.

5.4 Inference time
We aim at evaluating whether the performance of our approach in
terms of the inference time is adequate for online assistance. This
is a key aspect for the use of a recommendation system in practice.
If the latency of a recommendation is large, then the system cannot
be properly integrated in a modeling tool.

We choose a small model (codeparrot), a medium model (code-
gen) and a large model (gpt2-large). We run 1, 000 predictions for
each kind of task on a NVIDIA RTX A5000 GPU. Table 8 shows
the average time and the standard deviation. In the identifier rec-
ommendation task, all models are typically below half a second,
even though we request five recommendations. Regarding line rec-
ommendation, the latency remains consistently low, notably with
codeparrot. In fragment recommendation, codeparrot still shows low
latency but it increases for larger models which also have a large
standard deviation. The variability can be attributed to both the
diversity of fragment sizes and the quadratic time complexity of
the transformer with respect to the input length.

5.5 Discussion
In this section, we discuss more in-depth several aspects of our
experiments, limitations and the applicability of ModelMate.
Overal performance assessment. We obtain consistently good
results in the three DSLs evaluated. For the basic next token pre-
diction task, the accuracy ranges between 60% and 70% for Emfatic
and Xtext depending on the PLM. In the case of the Domain entities
DSL is higher but it might be biased due to repetitive patterns in
the body of the operations.
Impact of DSL syntax on performance. For the identifier sugges-
tion task we also obtain consistent results (in Emfatic and Domain
entities). The main difference is the fact that in Emfatic the MRR
for reference (i.e., ref and val) types is lower whereas for feature
names is higher. This is due to the fact that a feature in Emfatic

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
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Identifier Suggestion Line Fragment

Model Accuracy entity name op. name feature name feature type EM Edit Similarity BLEU

codegen-multi 77.39 40.86 19.49 33.35 78.16 36.99 59.21 71.78
codeparrot 76.31 41.38 20.07 31.39 79.20 34.38 55.92 72.19
gpt2 69.58 28.34 11.87 20.14 70.53 22.21 43.57 65.08

Table 5: Evaluation results for the Domain entities DSL

ModelSet MAR/GenMyModel
MRR@5 SR@5 MRR@5 SR@5

ModelMate 0.52 0.64 0.18 0.25
EcoreBert 0.34 0.47 0.09 0.13
MemoRec 0.72 0.73 0.10 0.12
KNN/Glove 0.70 0.75 0.06 0.08

Table 6: Comparison of ModelMate with other ML-based rec-
ommenders in the feature name recommendation task.

has the syntax e.g., val Node[*] nodes. Thus, to predict the type (e.g.,
Node) the model only has information about whether is attr, ref or
val, whereas to predict the feature name the PLM has already seen
the type. This shows that the syntax of the DSL is important for
the performance of the recommender system and should be taken
into account when designing new DSLs.

It is also interesting to analyse why the inference of some kinds
of identifiers has better precision than others. In Emfatic, the type of
val references (containment) has lower MRR than ref. This is because
meta-modelers typically begin creating the container classes (e.g.,
PetriNet) and then add the contained classes (e.g., Node). This means
that the context for the inference does not include the referenced
type. In the case of ref references, it is the other way around, they
typically refer to names that have already been written. A similar
issue occurs with the super classes, which are typically added at the
beginning of the file. This fact shows a limitation of our approach,
which do not take advantage of pieces of text which might be
defined below the cursor position. This requires special handling
at the tokenizer and grammar level and is left for future work.
PLM selection. With respect to whether larger models perform
better, we observe that the performance of the models is not only
determined by the number of parameters but also by the training
data and the architecture of the model. In this sense, the codegen
family outperforms the GPT2 family in general. However, codeparrot
is consistently performing very well in the three DSLs evaluated
despite being a small model. In this respect, it is worth noting that
DSLs are small scope languages. This means that the cost associated
to build a DSL needs to be modest, which applies to its construction
(e.g., using a language workbench) but also to the training and
deployment of ML-based recommender systems. Therefore, being
able to pick the proper model for a DSL is an important aspect to
take into account. Our evaluation suggests that codeparrot can be
a good alternative for DSLs since it has a low training cost, good
accuracy and fast inference time.
ModelMate outperforms existing model recommenders. The
comparison of ModelMate against other model recommenders has

shown that some recommenders (MemoRec and KNN/Glove) may
obtain very good results when the test dataset overlaps the training
data. This is so because they memorize. In our case, we apply early
stopping in the training to avoid overfitting and to make sure that
the model generalizes. Also, it is important to take into account that
the evaluation using the GenMyModel dataset can be considered
a “hard problem” since there is a important distribution shift with
respect to the dataset on which the models were trained. Thus, the
results obtained by ModelMate can be considered good. It is also
worth noting that the design of this task is oriented to non-textual
editors (e.g., when a user adds a feature to a class, the graphical
editor automatically sets the name). This evaluation shows that
ModelMate can be adapted to non-textual editors as well and can
even outperform approaches which have been tailored for this kind
of editors.
Generalisation and adaptability. We do not expect major issues
for ModelMate to generalise to new DSLs. For the evaluation we
have purposely chose two very different DSLs: Xtext and Emfatic
to show that the system is able to perform well for unrelated DSLs.
In this sense, the main entry barrier to apply ModelMate could
be the absence of datasets. If a good dataset for the target DSL
already exists, then the construction of a recommender should be
straightforward regardless of the style of DSL. We introduced the
notion of "semantically compatible dataset" as a way to refer to two
ideas: a) the transformation makes sense (e.g., transforming from
UML to Ecore, but not from Petri Net to Ecore) and b) the actual
dataset contains data that is useful for the users of the target DSL.
For instance, a UML dataset probably contains only domain models
and it might not be useful to train an Emfatic recommender which
is expected to be used to build meta-models. In this sense, devising
techniques to synthetically build datasets for DSLs (e.g., using LLMs)
is a new research direction that we expect to be important in the
future and would boost our approach [29, 32].
ModelMate vs. GPT3.5. With respect to the comparison with a
state-of-the-art LLM, we observe that ModelMate produces results
comparable to GPT-3.5. A key difference between both approaches
is the size of the models, since GPT-3.5 has several orders of mag-
nitude more parameters than the PLMs that we have considered.
This is a key aspect since the cost of using an LLM is high (in terms
of API costs, computational resources and data privacy). In con-
trast, ModelMate can be executed in modest computers with good
performance and without additional costs or data privacy concerns.
Practical usage. In our experience, the integration of a new DSL in
ModelMate is relatively simple. The main effort is to create a dataset
for the DSL, which can be done with a code generator. To give a
concrete example, the time needed to create and debug the code
generator for the Entities DSL dataset was about 4 hours. However,
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Identifier Suggestion Line Fragment

Model Accuracy class name super name attr. type ref. type val. type feature name EM Edit Similarity BLEU

GPT-3.5 80.58 42.00 79.00 72.50 58.50 51.5 54.00 22.60 65.80 23.73
codegen-multi 69.24 41.23 78.93 80.49 52.21 37.71 62.87 14.20 48.84 31.65
codeparrot 68.71 41.83 80.58 79.78 50.23 38.60 62.72 13.10 46.54 30.87
gpt2-large 68.52 40.95 78.46 81.35 47.41 39.05 61.25 12.60 45.12 30.42

Table 7: Comparison of ModelMate/Emfatic against prompting GPT-3.5 on a sampled version of our test dataset (1, 000 samples
for tokens, lines and fragments and 200 for each kind of identifier).

Identifier Line Fragment

codeparrot 84.34 ± 40.0 130.2 ± 43.8 420.0 ± 714.0
codegen-multi 232.2 ± 115.6 341.9 ± 130.0 1490.7 ± 2311.6
gpt2-large 365.4 ± 217.8 425.6 ± 191.6 1877.8 ± 2801.5

Table 8: Inference time of ModelMate/Emfatic. Average time
(ms) of 1, 000 samples per task ± the standard deviation.

this time is highly related to the expertise of the modeler in the
considered language. Regarding the editing experience, we found
it generally smooth and the suggestions are relevant, although this
must be formally validated with a user study in future work. More-
over, ModelMate is robust since it is able to provide suggestions
even in the presence of errors. This can be observed in Fig. 3 which
shows an Emfatic snippet with a syntax error (line 13) and a se-
mantic error (line 6, because Arc is not defined). The architecture of
ModelMate makes it possible to deal with incomplete models and
can provide suggestions even in the presence of errors. Moreover,
our evaluation has shown that the inference time is adequate for
online assistance.

Altogether, the results of the evaluation show that ModelMate
is a promising approach for enhancing a DSL with a smart recom-
mender system. Moreover, to the best of our knowledge, this is the
first recommender system specifically built for textual DSLs.

6 RELATEDWORK
This section conducts a review of previously proposed recom-
mender systems and places our work in context. Table 9 summarizes
the discussed recommender systems on several dimensions: the
recommended task, the underlying technique, the operational level
of the recommendation engine (i.e., whether it processes the AST
or the textual syntax as input), the targeted artifacts, the training
and evaluation datasets used, and whether it’s integrated into a
modeling environment. The initial two rows pertain to PLM-based
recommender systems (Sect.6.1), while the subsequent rows relate
to traditional ML-based recommender systems (Sect.6.1).

To the best of our knowledge no work has focused on providing
recommendations specifically tailored to textual languages. Existing
approaches assume that the model to be completed is structurally
valid, but this assumption does not work for models edited textually.
Therefore, they cannot be integrated in textual languages.

6.1 PLM-based MDE recommender systems
Language models have been used in MDE to build some recom-
mender systems. For instance, Weyssow et al. [31] introduce Ecore-
BERT, a RoBERTamodel trained from scratch on the full MAR/Ecore
dataset [14, 15]. By transforming Ecore models into serialized trees,
the model predicts masked names (class name, feature name, etc.).
The prediction is limited to one subword, this means that a rec-
ommendation could be potentially a partial word. To mitigate (but
not fully eliminate) this problem, the authors trained the subword
tokenizer and the RoBERTa model from scratch. However, this im-
plementation choice hurts the generalizability of the model as the
pre-training phase encompasses a relatively small dataset. Chaaben
et al. [5] use GPT-3 and a few-shot approach for recommending
class and feature names. One shortcoming of this approach is that
it relies on GPT-3 which is only accessible via an API.

6.2 ML-based MDE recommender systems
Several recent recommender system proposals opt for more tradi-
tional machine learning techniques. For instance, MORGAN [7, 8]
leverages graph kernels to support model and meta-model com-
pletion, focusing on structural features within models. However,
scalability becomes an issue due to the lack of an index for per-
forming 𝑘-nearest neighbor matches with respect to the training
set, hindering performance with larger datasets. MemoRec [6], em-
ploys a collaborative filtering approach for recommending class or
structural feature names. The evaluations of MORGAN and Mem-
oRec do not take dataset duplication into account which usually
inflates the results in similarity-based approaches [2]. Burgueño et
al.[4] propose an NLP-based architecture for completing software
models, utilizing two-word embedding models trained with gen-
eral knowledge and project documentation. These models are then
interpolated to provide recommendations. Lastly, Adhikari et al.[1]
introduce SimIMA, a recommender system tailored for Simulink
models, comprising SimGESTION for suggesting single-step opera-
tions via ensemble learning and SimXAMPLE for offering similar
models to developers for inspiration.

7 CONCLUSION
This paper tackles the construction of smart editing facilities for
textual DSLs, which is an important gap in current DSL environ-
ments. To this end, we propose a complete workflow to fine-tune
PLMs to tailor them to textual DSLs. ModelMate supports three
kinds of editing tasks: identifier suggestion, line completion, and
fragment completion. We have evaluated our proposal with various
PLMs and DSLs, including Emfatic, Xtext, and a Domain entity DSL.
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Approach Task Techniqe Level Target artifacts Training dataset Evaluation dataset Integration
Chaaben et al. [5] Identifier GPT-3 AST UML models N.A. ModelSet No
EcoreBERT [31] Identifier Training RoBERTa AST Ecore models MAR MAR No

MORGAN [8] Identifier 𝑘-nn + graph kernels AST Any ModelSet
BigQuery JSON

ModelSet
BigQuery JSON No

MemoRec [6] Identifier Collaborative filtering AST Ecore models Ecore555
Ecore GitHub

Ecore555
Ecore GitHub No

Burgueño et al. [4] Identifier Word embedding + 𝑘-nn AST UML models Propietary dataset Propietary dataset No
SimIMA [1] Fragment Ensemble learning AST Simulink Simulink datatset Simulink datatset Yes

ModelMate
Identifier
Line

Fragment
Fine-tuning PLMs Textual syntax Any with textual syntax MAR MAR

ModelSet Yes

Table 9: Comparative table of the state-of-the-art recommender systems in the context of MDE.

The results show thatModelMate consistently achieves good perfor-
mance. In particular, ModelMate outperforms existing alternatives
in the feature name recommendation task and it is comparable to
OpenAI GPT 3.5. Moreover, we show that the inference time is
suitable for real-time assistance scenarios. On the practical side, we
contribute a framework to build recommender systems for other
DSLs as well as an Eclipse plug-in for integrating them into textual
editors and we make available concrete plug-ins for Emfatic and
Xtext.

As future work we plan to investigate how to extend our ap-
proach for open source LLMs without compromising too much the
training and inference speed. We also want to look into how to
enrich datasets, for instance, merging several sources as well as
analysing its quality. Finally, we are interested in adapting Model-
Mate to non-textual editors for other tasks like name recommen-
dation in general (not only feature names) and predicting the next
editing operation.
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