Software and Systems Modeling
https://doi.org/10.1007/s10270-025-01272-7

SPECIAL SECTION PAPER r')

Check for
updates

Developing configurations and solutions for logical puzzles with UML
and OCL

Martin Gogolla® - Jestis Sanchez Cuadrado?

Received: 20 March 2024 / Revised: 20 January 2025 / Accepted: 23 January 2025
© The Author(s) 2025

Abstract

Logical puzzles can be important factors for the development of rational analysis and application capabilities for pupils
and students. Therefore, logical puzzles can also take a prominent supporting role in computer science education. This
contribution proposes a UML class model with accompanying OCL constraints for developing logical puzzles. The class
model acts as a metamodel for the description of the basic puzzle organization and the logical clues presented to the learners.
The constraints express, for example, statements about uniqueness of solutions, and the degree of puzzle complexity may
be tuned by appropriate model elements. Given a puzzle specification which simply comprises the domain elements of the
puzzle plus constraints, our implementation uses a UML and OCL solver to construct a puzzle instance (i.e., a set of clues
and solutions) automatically. The puzzle is made playable by a graphical user interface. We have validated this approach for
developing puzzles by building several puzzles from the literature of increasing complexity and performed a student survey.

Keywords Logical puzzle - Formal method - UML - OCL - Metamodel

1 Introduction

For teaching mathematics and computer science, puzzles are
regarded as valuable tools [2]. They provide a practical set-
ting (i.e., a realistic problem) over which one can practice
abstract mathematical concepts. On the one hand, they are
useful for improving problem-solving skills. On the other
hand, puzzles may improve engagement and motivation since
they challenge students and boost their inherent curiosity, and
also are a way of training their persistence on tackling diffi-
cult tasks.

The goal of this work is to apply modeling techniques to
the automated development of logical puzzles which could be
used to support teaching methods for computer science and
mathematics, but also for other disciplines and rationality in
general. We propose an automatic approach for formulating

Communicated by Javier Troya and Alfonso Pierantonio.

B Martin Gogolla
gogolla@uni-bremen.de

Jesus Sanchez Cuadrado
jesusc@um.es

University of Bremen, Bremen, Germany

Universidad de Murcia, Murcia, Spain

Published online: 25 February 2025

and solving logical puzzles, i.e., logical problems that can be
solved through deductive reasoning. The focus is on teaching
modeling and formal methods to university students, but we
also take the perspective to apply puzzles to teach elementary
formal reasoning to school pupils. For expressing models, we
employ the unified modeling language (UML [21]) and the
object constraint language (OCL [22], [4]). As the underlying
modeling tool, we take advantage of the system USE (UML
specification environment [8], [9]). As a central component,
USE offers a model finder that can automatically construct
object models for a class model with OCL constraints (it can
also complete partial object models). To give an example
for applying the model finder, consider one builds a meta-
model (1) for state machines including states and transitions
and (2) for running state machines on the basis of transi-
tion inputs. Then, the model finder is able to automatically
construct, for a given domain, a state machine and one or
more example executions of the state machine in the speci-
fied domain (see the behavioral example in [13]).

In order to achieve the goal of modeling and automati-
cally deriving logical puzzles, our approach is based on a
metamodel, which allows a puzzle developer to formulate
the domain of the puzzle and the vocabulary. For example,
a puzzle could be about car colors or could be about actors
in a fantasy novel. Moreover, through optional OCL con-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-025-01272-7&domain=pdf

M. Gogolla et al.

straints the developer can specify relationships between the
elements of the domain. The research challenge lies in auto-
matically constructing logical puzzles in a flexible and easy
way for various domains, including automatically building
clues, for which various degrees of difficulty can be stated.
We apply the USE model finder to automatically instantiate
concrete puzzles. Instantiation of a puzzle means deriving
a consistent set of domain elements and clues. Such clues
would be presented to the puzzle player and lead typically
to a unique solution. To make the puzzles playable, we have
built a simple user interface on top of the USE model. To
validate our approach, we have implemented several puzzles
proposed by the literature and available in the web, and we
have performed a user study with university students.

Our contribution lies in proposing a conceptual model and
method for building logical puzzles, providing an implemen-
tation and validating the approach with various techniques
such as comparing and implementing existing puzzles and
performing a user study. By applying the constructed log-
ical puzzles generally in education, not only in Computer
Science, one can train rational thinking, analysis and devel-
opment through using the puzzles in lectures, exercises and
examinations. The simplicity of using puzzle notions from a
particular domain and the option to tune puzzle difficulty to
a particular audience gives the puzzle construction process a
low-threshold character.

This contribution is structured as follows. Section 2 gives
an overview on our approach by explaining it with a sim-
ple example that will be used throughout the paper. Section 3
puts forward the essential model details by discussing how to
design, solve and model puzzles. Section4 turns to practical
aspects, and in particular describes an implementation. Sec-
tion 5 validates the approach by showing in particular known
examples from the literature and by reporting on a student
survey. Section 6 discusses related work. The paper ends with
a conclusion section and also elaborates future work.

2 The basicidea

In this section, we describe our approach to model puz-
zles using UML and OCL. We use a running example to
show the different elements involved. In Sect. 2.1, we dis-
cuss how puzzle elements like possible solutions or clues
are designed, Sect. 2.2 turns to questions how to solve puz-
zles, and Sect. 2.3 debates how to generally meta-model and
represent puzzles with a UML class model (with classes,
attributes, associations and operations) and restricting OCL
constraints regarding aspects concerning representation (syn-
tactic aspects) and content (semantic aspects).

@ Springer

2.1 Designing puzzles

A typical logical puzzle, namely a problem that can be solved
through deductive reasoning, is shown in Fig. 1. The left
upper part visualizes the possible puzzle solutions, and in
the left lower part four clues are stated that determine the
solution. The right part represents the puzzle in the form of a
UML and OCL class model along with OCL invariants that
determine exactly one allowed object diagram. The UML and
OCL representation is only shown to make the puzzle precise
and to show a possible puzzle implementation. One does not
need OCL to understand the puzzle task. Often, for better
motivation, the puzzle is embedded into a real-life context.
In this example, the puzzle could be stated as follows:

A bank robbery has happened, and the police is con-
sulting four witnesses about the colors of the car that
the robbers have used since this information will help
them solve the case. The witnesses all tell the truth;
however, one cannot expect that all observations are
helpful.

J

Here, observations are stated in the form of conditional
statements, as shown in Fig. 1. Statements could also be non-
conditional (like top <> blue, i.e., the top of the car was
not blue). In this case, the task for the person solving the
puzzle, say the police inspector, is to identify on the basis of
the observations the top and body color of the car. Here, this
is possible and leads to a unique solution, if done properly.
Not all sets of clues do have a solution or do have a single
solution. This depends on the stated clues.

To model this puzzle, we use the USE tool [8], [9]) which
provides us with facilities to construct UML class models
with OCL constraints. USE supports both textual and visual
representation of models, enabling the analysis and inspec-
tion of model properties through derivation and deduction.
The goal in the tool USE is the prediction of system properties
from the model before actually building an implementation.
USE offers to the developer a graphical user interface (GUI)
and a command line interface (CLI). Models that are class-
oriented (class and protocol state-machine models) and that
are instance-oriented (object models as well as sequence and
communication models) can be studied in USE. A model
finder for class models including OCL invariants supports
object model finding and partial object model completion.
Thus, the tool comprises (1) an OCL evaluator that deter-
mines the value of an OCL expression in an object model
(object diagram), and (2) a model finder, that automatically
constructs object models for a given class model and a set
of OCL invariants or reports unsatisfiable, if contradicting
constraints are stated, for example.

The elements from Fig. 1 are formally represented as auto-
matically generated (details will follow later in Sect. 3) USE

Developing configurations and solutions...

objects as shown in Fig. 2. The UML and OCL parts from
the right of Fig. 1 possess a formal counterpart in Fig. 2. For
example, a color is represented as a possible value entry
of a Property object. Each of the nine possible solutions
is shown as a Thing object and each of the four clues as
a Clue object. Property objects with attributes name
and value describe Thing objects, e.g., thing3 is linked
to two Property objects, the first one property3 with
name= ‘top’ and value='red’ and the second one
propertyb withname='body’ and value='red’.In
order to simplify the diagram, four property objects are hid-
den. The puzzle solution is represented by the yellow marked
Thingobject thing3 thatis the only Thing object satisfy-
ing all clues. The remaining Thing objects are not solutions
to the puzzle and this is indicated by a list of banning clues
in the northeast object rectangle corner (details on how to
achieve the solution will follow later in Fig. 3).

In the lower part of Fig. 2, four OCL queries and their
results are shown. The queries discover central aspects of
our approach.

1. The first query represents the four clues in human
readable form, namely in terms of a string sequence con-
sidering the clues (in order of object identity cluel,
clue?2,...) using the derived attribute t oStr; for exam-
ple, the third Clue object clue3 is represented as
body <> red => top = green (Inthe running text,
a sloppy notation for string values without apostrophes
is used).

2. The second query selects among the Thing objects those
in which all clues are valid; in this case, there is only
a single Thing object satisfying all clues, the unique
puzzle solution, namely the object thing3 indicated
with yellow color in the upper part of the figure.

3. The third and fourth queries can be understood as con-
stituting a derived association between classes Thing
and Clue. We will use the term ban as follows: a clue
is banning a thing (a possible solution) if violation of
the clue excludes the thing as a solution; in the inverse
direction, we will say that a thing is banned by a clue.
The third query indicates for each Thing object (in order
thingl, thing2, ...) the set of Clue objects that ban
the Thing object, or in other words, the query yields the
set of clues where each single clue disqualifies the consid-
ered Thing objectas a puzzle solution; e.g., (a) thing7
is banned by clue3 and clued and (b) thing3 is
banned by no Clue object, i.e., the empty set of Clue
objects indicated by yellow in the query result; the result
of this query is also indicated in the upper figure part in
the small rectangles drawn northeast next to the Thing
object rectangles.

4. The fourth query indicates for each Clue object the
set of Thing objects that the Clue object is banning;

e.g., (a) cluel is banning thing5 and thing6 and
(b) clue2 is banning no Thing object, i.e., the empty
set of Thing objects, also indicated with yellow in the
query result; because clue2 has this particular char-
acteristic this object is also marked with yellow in the
object diagram; thus clue2 does not give additional
restrictions; one would yield the same solution without
clue2. These four OCL queries show central aspects
of the approach insofar that (a) the puzzle clues, (b) the
unique puzzle solution and (c) the relationship between
the potential solutions (the things) and the clues, which
ban them from being the actual solution, are studied.

2.2 Solving puzzles

A systematic method for solving the puzzle is shown in Fig. 3.
To illustrate the method, the possible puzzle solutions already
shown in Fig. 1 are presented four times but complemented
by additional features to indicate each step in the process. In
each of the steps, one clue is applied and the result is captured
by the black and gray tokens inside one of the nine possible
solutions:

1. In the first step, the first clue IF body=blue THEN
top=Dblueisapplied. The clue is logically equivalent to
body <> blueORtop = blue, and its logical nega-
tion is body = blueANDtop <> blue. All clues are
expected to be valid in the solution. Therefore, a possible
solution that satisfies the negation of the clue can be ruled
out as being the solution (i.e., the thing is banned). The
ruling out step is indicated by the two black tokens in
the possible solutions that satisfy the negation of the first
clue. The two black tokens ban two possible solutions
and mark them as impossible for becoming the solution.

2. In the second step, the second clue is applied. As a
forward-looking remark, we state that some readers
might classify this step and this clue as odd. (2a) The
black marks from the previously detected banned solu-
tions turn its color to gray. (2b) New black marks would
be placed for new banned solutions from the second clue;
however, in this case, the negation of the second clue says
body=green AND body=red; there is no possible
solution that satisfies this condition; accordingly, no new
black mark is introduced (as will be done in the next step).

3. In the third step, the third clue is applied. The negation
of the third clue isbody <> redANDtop <> green.
Accordingly, four new black marks for the four possible
solutions satisfying the negated clue are introduced; the
sixth possible solution was marked gray and now addi-
tionally becomes marked black.

4. In the fourth step, the fourth clue is applied. The nega-
tion of the last clue additionally bans four possible
solutions with body <> blueANDtop <> red. This

@ Springer

M. Gogolla et al.

Class diagram 2
«enumerations Ob Object diagram P vl o |
Car Color
top : Color blue | carl:Car |
hody : Color | | green top=#red
red hody=#red
[

context c:Car inv cluet:
c.body=#blue implies c top=kblue

context c:Car inv clue2:

c body=#green implies c body==#red

context c:Car inv clue3:
c.hody<=#red implies c top=Xgreen

context c:Car inv clued:
c.hody<=#blue implies c top=#red

(1) IF body=blue THEN top=blue
(2) IF body=green THEN body<>red
(3) IF body<>red THEN top=green
(4) IF body<>blue THEN top=red

Fig.1 Things and clues

Ob Object diagram

cluet:Clue

prem=property2
negatedP=false
conc=propertyt
negatedC=false
foStr="body=blue == top=hlue'
Mans="body=blue & top==hlue'

clue2:Clue

#foStr=Sequence{'body green' top blue'}

foStr=Sequence{'body green' top green'}

thing1: Thing (clued] thing2: Thing (cived] thing3: Thing
banned=true banned=true banned=false
foStr=Sequence{'body red' top blue'} foStr=Sequence{'body red' top green'} #oStr=Sequence{'hody red' top red'}
thing4:Thing {cued] thing5.Thing {clue] thing{S:Thing cel cue3]
hanned=true banned=true | banned=true
ARoStr=Sequence{'body blue' top blue'} AfoStr=Sequence{'body blue' top green'} ARoStr=Sequence{'body blue' ‘top recﬂ
— 7 —
thing7-Thing _ LCue3.clued thing8: Thing e thing®. Thing (clue3]
banned=true banned=true banned=true

foStr=Sequence{'body green' top red'}

property3:Property
name="top'
value="red'

4 Property

prem=property1

negatedP=false

conc=propertys

negatedC=true
#AoStr="body=green == hody==red'
hans='hody=green & body=red'

property5: Property
name="body'
value="red'

objects hidden:

clue3:Clue

- top blue
- top green
- hody blue

- body green

? Clue allinstances-=asSequence->collect(c | c toStr).-- Clues in human-readable form

= Sequence{'body=blue == top=blue', 'body=green == body<>red', '‘body<=red == top=green’, 'body<>blue == top=red'}: Sequence(String)

? Thing.alinstances-=select(t | Clue allinstances-=forAll(c | t.valid(c))) -- Things where all Clues are valid

> Set{thing3}: S

? Thing.allinstances->asSequence()->colle _(Nested(t | Clue allinstances-=select(c | t bannedBy(c))) -- Mapping from Things to banning Clue sets
= Sequence{Set{clued}, Set{clued}, Set{}, Set{clue3}, Set{cluel }, Set{cluel clue3}, Set{clue3 clued}, Set{clued}, Set{clue3}}: Sequence(Set(Clue))

? Clue allinstances-=asSequence()-=collectNested(c | Thing.allnstances-=select(t | t bannedBy(c))) -- Mapping from Clues to banned Thing sets
= Sequence{Set{thing5 thing6}, Set{}, Set{thingd thing6 thing? thing3}, Set{thing1 thing2 thing7 thingd}} : Sequence(Set(Thing))

et(Thing)

prem=propertys

negatedP=true

conc=property4

negatedC=false
ARoStr="body=>red =» top=green’
hans="body==red & top==green’

clued:Clue

prem=property2
negatedP=true
conc=property3
negatedC=false
#oStr="body==blue == top=red"
Mans="hody==blue & top==red'

Fig.2 Object model representation of ‘Things and clues’ and four central OCL queries

@ Springer

Developing configurations and solutions...

leaves exactly one possible solution not banned, i.e., one
solution that is neither marked with a black or a gray
token. This unmarked possible solution (car with red top
and red body) becomes now the solution.

All elements in Fig. 3 taken together give a systematic,
substantial overview on the development of the solution. Col-
ors of the tokens indicate the impact of applying the current
clue and the previous clues. The fact that the second clue
does not ban any possible solution is reflected in Fig. 2 by
the circumstance that the fourth OCL query gives for clue2
as the result the empty set Set { }. The fact that some clues
are banning more than one possible solution is reflected by
the circumstance that two clues are occuring in the north-
east corners of the Thing rectangles. Finally, the property
of being definitively a solution is reflected in the figure by the
circumstance that the Thing object thing3 does not have
any banning Clue listin its northeast corner; the property of
being a unique solution is reflected by the circumstance that
object thing3 is the only Thing object without a banning
Clue list in its northeast corner. Here, we have applied the
clues in the order of their objectidentity (cluel, clue?2,...).
However, one could apply the clues in any order, leading to
a different order and color for the marks, but leading to the
same solution thing3 and banning the same possible solu-
tions.

2.3 Modeling puzzles

Our approach relies on a UML class model (metamodel), and
a puzzle is modeled explicitly with an accompanying object
model. In Fig. 4, the USE class model and informal explana-
tions for model elements are presented. These elements have
already appeared in the object model in Fig. 2 in the form of
examples. Now, we discuss the classes Thing, Property
and Clue in a systematic way, mostly independent from an
example.

A Thing object (e.g., a car with particular top and body
color) represents a possible solution for a modeled logi-
cal puzzle. A thing can be linked through the association
ThingProperty to Property objects which describe
with name-value pairs relevant, puzzle domain-specific
aspects of a thing (e.g., a car with top-red and body-blue). A
Property can state that a linked thing has for the property
name the shape value and can be a universal attribute in
the considered domain. In order to give a fresh example dif-
ferent from the used car domain, in a puzzle about potentially
poisoned dinner courses there could be course properties
like name = ‘Starter’ with value='Soup’ rep-
resenting the course Starter=Soup or properties like
name='Dessert’ with value='Fruit' representing
the course Dessert=Fruit. A set of Clue objects give
hints in order to identify a unique solution among the possible

solutions, i.e., the set of things constituting the puzzle (e.g.,
(1) clue: if the car top is not blue, then the car body is green;
(2) clue: the car body is not red). Clues refer to properties
and can be (1) conditional with a premise prem and a con-
clusion conc (e.g., top =’ red’ => body =’ green’)or
(2) unconditional (e.g., body = ‘red’) in which case
premise and conclusion are required to coincide in the for-
mal object representation. Both premise and conclusion can
be indicated as being negated with Boolean flags.

In Fig. 4, the model operations and the needed model
invariants are sketched. The model operations allow to
express central model functionalities in a compact way:

— Thing: :value (propertyP). For a Thing, the
value of the propertyP in the Thing

— Thing: :valid(Clue). Whether the Clue is valid
(i.e., true) in the Thing

— Thing: :bannedBy (Clue). Whether the Thing is
banned by (or, in other words rejected by) the Clue.

— Thing: :cluesValid() :Set (Thing). The set of
all valid things, independent from the self-thing.

— Clue: :bansOCL (). The OCL expression (in the form
of a String) retrieving the things that are banned by all
clues.

— Clue: :bansThing () : Set (Thing). For a clue,
the set of things that are banned by the clue.

The invariants are listed in the order of their context class
and their name, additionally classifying them as belonging
to (1) syntax, (2) semantics or (3) the loaded invariants (e.g.,
user defined). Although all invariants have formally the same
shape as universally quantified formulas over the context
class, we are distinguishing between syntax and semantics
because the invariants serve different roles: Invariants about
syntax make restrictions about the formal representation of
entities from the puzzle and clue domain (e.g., all properties
are syntactically different in the sense that no two differ-
ent properties have the same attribute values for name and
value); invariants about semantics restrict evaluations and
properties of entities from the problem domain (e.g., how
clues are evaluated in the possible solutions and how that
evaluation is related to the Thing attribute banned; a cen-
tral semantic invariant requires that there is only one valid
solution, i.e., one Thing in which all C1ue objects evaluate
to true). The seven syntax invariants handle: (1) clue repre-
sentation, (2) uniqueness of clues, (3) linking properties to
things, (4) unique name-value pairs for properties, (5) link-
ing things to properties, (6) things having unique properties
and (7) thing properties referring to properties with different
names. The two semantic invariants handle: (1) things where
all clues are valid being not banned, and (2) existence of a
unique solution in which all clues are valid. Finally, loaded
invariants allow the user to add puzzle-specific constraints.

@ Springer

M. Gogolla et al.

.
>
i
r/
:
r

|
|
|

e
@
s
@
(E
@

_
;
>
_
3
W.
:

2 O

ﬂE’Q

€2
15
&

s
@
s
@

o AR || o/ mEah) || o/ =R

:
>
:
:
L

[0 MO A o‘ [0 MO A o‘ o) A o‘ [MO o o‘ [MO o o‘ (9 MO o o‘
(1) IF body=blue THEN top=blue BANS: body=blue and top<>blue (1) IF body=blue THEN top=blue
(2) IF body=green THEN body<>red (2) IF body=green THEN body<>red BANS: body=green and body=red
(3) IF body<>red THEN top=green (3) IF body<>red THEN top=green
(4) IF body<>blue THEN top=red (4) IF body<>blue THEN top=red

/Rl || o okl
INpWp | MW

E
el)

e
@

g
" @

(E
@

y
r

|
|
|

(E
@

g
¥ o

e
@

|
g
2> O
.
@

s
@
s
@

[
[
o
@

;

>

:

;

»

:

»

:

15

;
el

‘00

"
L&)
b«
H
&)
oF
15
)
b«
I§|
()
b—
l§|
l§|
@

(1) IF body=blue THEN top=blue (1) IF body=blue THEN top=blue

(2) IF body=green THEN body<>red (2) IF body=green THEN body<>red

(3) IF body<>red THEN top=green =~ BANS: body<>red and top<>green (3) IF body<>red THEN top=green

(4) IF body<>blue THEN top=red (4) IF body<>blue THEN top=red BANS: body<>blue and top<>red

Fig.3 Steps for achieving the puzzle solution

@ Springer

Developing configurations and solutions...

Class diagram

6 Operations:

Thing::valid(c: Clue):Boolean

hanned : Boolean

#oStr : Sequence(String)
value(propertyP : String) : String
valid(c : Clue) : Boolean
bannedBy(c : Clue) : Boolean
cluesValid() : Set(Thing)

1..* thing

Clue::bansOCL(): String

Thing:: value(propertyP: String): String
For a thing, the value of the property of the thing.

Thing Whether the clue is valid for the thing.
Thing::hannedBy(c: Clue).Boolean

Whether the thing is banned by the clue.
Thing::cluesValid(): Set(Thing)

The set of all valid things (independent from the self thing).

The OCL expression retrieving the things that are banned by all clues.
Clue::bansThing(): Set(Thing)
The things that are banned by the clue.

prem : Property
negatedP : Boolean
conc : Property
negatedC : Boolean
ARoStr : String

Mhans : String
hansOCL() : String
bansThing() : Set(Thing)

10 Invariants (classification: SYNTAX (7), SEMANTICS (2), LOADED INVARIANT (1)):

If the premise property coincides with the conclusion property, then
the premise negated flag coincides with the conclusion negated flag.

ThingProperty | oy e nremConcEQ_negatedEQ § SYNTAX
1..* property
Property Clue::unigueClue 7 SYNTAX
name : String Two different clues are syntactically different.
value : String Property::sameNumThing / SYNTAX: PROPERTY-THING
Each property is linked to the same number of things.
a Property::unigueMameValue f SYNTAX
ue

Two different properties have different name-value pairs.
Thing::oneThingWithCluesValidNotBanned / SEMANTICS

There is a unigue solution among the set of things.
Thing::sameNumProperty f SYNTAX: THING-PROPERTY

Each thing is linked to the same number of propetrties.
Thing:: solutionRedTopRedBody f LOADED INYVARIANT

The solution is red-top and red-bottom.
Thing: thingsWithCluesValid_EQ_thingsNotBanned f SEMANTICS

The things, where all clues are valid, are the things where nothing is banned.
Thing::unigqueProperty § SYNTAX

Two different things are linked to different properties.
Thing::unigquePropertyMame § SYNTAX
For each thing, two different properties have different names.

Fig.4 Class model with attributes and associations as well as informal explanation for operations and invariants

In this case, the single loaded invariant requires that one par-
ticular solution among the nine possible solutions is chosen:
Top and body of the car must be red. If this invariant is not
given, the system will just pick one solution arbitrarily.

3 Automatic generation of puzzle games

Our formal UML and OCL model allows the construction of
logical puzzles. This could be done by manually creating the
objects explicitly, and the USE tool would check the valid-
ity of the designed puzzle. However, as the puzzle becomes
larger and more complex, building the puzzle manually could
be time-consuming. Moreover, each possible variant of the
puzzle must be encoded explicitly. In this section, we describe
how we take advantage of the capabilities of an OCL solver,
the USE model finder, in order to automatically generate puz-
zle instances from our puzzle metamodel as given in Fig. 4.

3.1 Focusing on operations, clues and invariants

One central model functionality is realized by the operation
Thing: :valid(c:Clue) : Boolean. In the context of
a potential puzzle solution, in formal terms a Thing object,
the operation checks whether a parameter Clue, which is
basically a primitive formula over a potential solution, is
valid in the potential solution or is not valid, where the oper-
ation result is determined by the Boolean return type. The
operation must consider the different syntactical options for
building a Clue, where the syntactical options are deter-
mined by choices between (a) conditional or non-conditional
clue, (b) premise negation or premise affirmation and (c) con-
clusion negation or conclusion affirmation.

In Fig. 5, all six options for building and representing puz-
zle clues are shown. In the left column, the two options for
expressing unconditional clues are pictured, and in the right
column, the four options for conditional clues are displayed.
In each of the two columns, the clues are first shown in tex-

@ Springer

M. Gogolla et al.

conditionalEgEq: Clue
prem=propEgEGP
negatedP=false

propEqEP:Property
name="namep"
value="valuep'

nameP=valueP == nameC=vaIueCﬁ

conc=propEqEqC
negatedC=false

propEgEGC: Property

unconditionalEqual: Clue
prem=propUE

name="nameC'
value="valueC'

#oStr="nameP=valueP =» nameC=valueC'
hans='nameP=valueP & nameC==valueC'

conditionalUnEg: Clue
prem=propUnEgP
negatedP=true

propUnEgP:Property
name="nameP"
value="valueP'

negatedP=false
conc=propUE

propUE:Property
name='name’

AN
name=value

nameP==valueP => nameC=valueC 'ﬁ conc=propUnEqC

negatedC=false
foStr="name=value'
hans='name=>value'

value="value'

unconditionalUnequal: Clue
prem=propUU

propUnEgC: Property
name="nameC’
value="valueC'

negatedC=false
foStr="nameP=>valueP =» nameC=valueC'
hans="nameP=>valueP & nameC==valueC'

propEgUnP: Property
name="namep"'
value="valueP'

conditionalEgUn: Clue
prem=propEgUnP
negatedP=false

nameP=valueP == nameC<=valueC B] conc=propEqUnC

n, | negatedP=true | eropUL:Property.
negatedC=true value="value'

foStr="name==value'
hans='name=value'

r iC=true
foStr="nameP=valueP => nameC==valueC'
hans='nameP=valueP & nameC=valueC'

propEgUnC: Property
name="nameC'
value="valueC'

conditionalUnUn: Clue propUnUnP:Property
name="namep"

value="valueP"

prem=propUnUnP
negatedP=true

nameP==valueP == namec=>valueclﬁ conc=propnlnC

Fig.5 Six options for building and formally representing puzzle clues

tual form and then in the form of the corresponding object
model representation. Basically, the left textual representa-
tion coincides with the value of the derived attribute toStr
in a C1lue object. The different options in both columns arise
due to choices for negation or affirmation of the Clue con-
dition with respect to the C1ue premise and conclusion.

In Fig. 6, the implementation of the operation
Thing::valid(...) is shown. As indicated within
comments, the implementation distinguishes the six cases for
clues as presented in Fig. 5. Let us consider in more detail one
prototypical example case, a conditional clue with equality in
the premise and in the conclusion: nameP = valueP =>
nameC = valueC. This case is implemented lines 10-14.
(1) In line 12, the premise property name c . prem.name is
used to obtain the value of the property in the current thing
(nameP). Then, it is checked whether the premise property is
equal to the premise value obtained with c.prem.value
(valueP). (2) For the conclusion, a similar procedure is
followed (line 14). The conclusion property nameC and the
conclusion value valuecC are determined (using the expres-
sions t.value(c.conc.name and c.conc.value,
respectively). Then, it is checked whether the conclusion
property is in the current Thing equal to the conclusion
value. (3) Last, the implication expressed in the clue is
checked by evaluating the left and right hand side (i.e.,
implies in OCL). The other five cases work in an anal-
ogous way with negation or affirmation of clue conditions

@ Springer

propUnUnC: Property
name="nameC'
value="valueC'

negatedC=true
foStr="nameP=>valueP =» nameC<>valueC'
Mans="nameP=>valueP & nameC=valueC'

respected by applying equality or inequality checks at appro-
priate spots.

As is detailed in Fig. 6, the operation Thing: :
cluesValid() :Set (Thing) returns the set of all
Thing objects in which all clues are valid. The operation
does not use or rely on a self-object and is thus indepen-
dent from the Thing object on which it is called. It can
be applied for characterizing solutions, because all clues are
assumed to be valid in a solution. If the puzzle is required
to have a unique solution, this unique solution must be
included in the operation result because it must be valid
for all clues. Two further, central invariants, which apply
cluesValid () in an essential way, contribute to the core
of the model, namely the two invariants that we have called
semantic invariants before, because they restrict the way
attribute values and links have to be evaluated. Both invari-
ants use the Boolean-valued Thing attribute banned:
The purpose of this attribute is to mark a Thing object,
i.e., to mark a possible solution, as being banned or, in other
words, as being unusable as a solution. (1) The invariant
Thing: :thingsWithCluesValid_EQ_thingsNot
Banned asserts that the set of valid Thing objects is
exactly the set of Thing objects that are not banned,
i.e., things t with t.banned=false. (2) The invariant
Thing: :oneThingWithCluesValidNotBanned
guarantees the existence of a unique solution by requiring
that among all Thing objects, in which all clues are valid,

Developing configurations and solutions...

1 Thing::valid(c:Clue):Boolean = -- Thing self regards Clue c as valid

2 let t:Thing = self in -- Premise property nameP; Conclusion property nameC;

3 if c.prem=c.conc and -- non-conditional

4 c.negatedC=false then -- name=value - E.g., top=red

5 t.value(c.conc.name)=c.conc.value else

6 if c.prem=c.conc and -- non-conditional

7 c.negatedC=true then -- name<>value - E.g., top<>red

8 t.value(c.conc.name)<>c.conc.value else

9 if c.prem<>c.conc and -- conditional

10 c.negatedP=false and c.negatedC=false then -- nameP=valueP => nameC=valueC
11 —-- nameP=valueP

12 t.value(c.prem.name)=c.prem.value implies -- E.g., top=blue => body=red
13 —-- nameC=valueC

14 t.value(c.conc.name)=c.conc.value else

15 if c.prem<>c.conc and -- conditional

16 c.negatedP=false and c.negatedC=true then -- nameP=valueP => nameC<>valueC
17 t.value(c.prem.name)=c.prem.value implies -- E.g., top=blue => body<>red
18 t.value(c.conc.name)<>c.conc.value else

19 if c.prem<>c.conc and -- conditional

20 c.negatedP=true and c.negatedC=false then -- nameP<>valueP => nameC=valueC
21 t.value(c.prem.name)<>c.prem.value implies -- E.g., top<>blue => body=red
22 t.value(c.conc.name)=c.conc.value else

23 if c.prem<>c.conc and -- conditional

24 c.negatedP=true and c.negatedC=true then -- nameP<>valueP => nameC<>valueC
25 t.value(c.prem.name)<>c.prem.value implies -- E.g., top<>blue => body<>red
26 t.value(c.conc.name)<>c.conc.value

27 else false endif endif endif endif endif endif

28

29

30 Thing::cluesValid() :Set(Thing) =
31 Thing.allInstances—select(t |

32 Clue.allInstances—forAll(c | t.valid(c)))

33
34

35 context Thing inv thingsWithCluesValid_EQ_thingsNotBanned:
36 cluesValid()=Thing.allInstances—select(t | t.banned=false)

37
38

39 context Thing inv oneThingWithCluesValidNotBanned: -- one solution
40 cluesValid() —select(t | t.banned=false)—size=1

Fig. 6 Implementation details: operations Thing: :valid(c:Clue) :Boolean and Thing: :cluesValid () : Set (Thing) as well as
invariants Thing: : thingsWithCluesValid_EQ_thingsNotBanned and Thing: :oneThingWithCluesValidNotBanned

there is exactly one Thing object that is not banned, namely
the unique solution.

3.2 Model configuration

Our puzzle model is a general model to build logical puzzles
and we use an OCL solver, the USE model finder, to construct
puzzle instances automatically. The solver requires informa-

tion about which values are permitted in the solution, the
number of possible solutions and optional additional con-
straints about the puzzle not captured by the puzzle by the
puzzle model.

In our approach, a puzzle can be configured in a num-
ber of ways: One can use (1) the properties file in order
to specify the basic underlying puzzle terminology and the
number of possible solutions, and (2) additional invariants to

@ Springer

M. Gogolla et al.

restrict possible solutions regarding the puzzle terminology
or regarding the form or the extent of puzzle clues.

In the properties file, one can determine for the class
Property the items that are used for the attributes name
and value. In our running example, we have used top and
body for the attribute name, and red, blue and green
for the attribute value. One can also specify bounds for the
number of objects in a class and the number of links in an
association. In the example, we have restricted the number
of Thing objects to 9, the number of Property objects to
6 and the number of ThingProperty links to 18, result-
ing in 2 links per Thing object and 3 links per Property
object. Additionally, in order to restrict the puzzle options,
one can use particular invariants to be loaded that regulate
name-value dependencies, similar to introducing value types
for properties. For example, one could have an invariant that
restricts the body color to black and white and the top
color to gold and silver, if desired.

Puzzle configuration with additional invariants might also
handle puzzle features which are independent from the puz-
zle domain at hand. Invariants can restrict the features of
the puzzle solution by considering the form and number
of used clues: As clues can be conditional or uncondi-
tional, invariants might require a certain number of clues
in each category. For example, it is possible to demand
that all clues are conditional. We have seen in examples,
clues do not necessarily ban things, i.e., a clue might not
exclude any possible solution at all. For instance, the clue
body = green => body <> red in the running exam-
ple was such a clue. Such clues can make the puzzle
purposefully more complicated, if this is desired, and the
identification of such clues is part of the teaching concept.
Additional invariants might require to exclude or to include
such clues. Lastly, our invariant that insists on a unique solu-
tion is debatable: Instead of requiring exactly one solution, a
replacing invariant could require that two or three solutions
are allowed.

3.3 Classifying our model

Our model is a not only a model, but we classify it as a meta-
model. The assessment that we are working with a metamodel
is already present in Figs. 1 and 2: the UML and OCL class
model from the right of Fig. 1 is represented in Fig. 2 as
an object model that instantiates the meta class model from
Fig. 4. Basically, the object model in Fig. 2 and the class
model in Fig. 1 are different views on the same matter, on
the same circumstances.

Our model can be regarded as a multi-level model, but
it is implemented in a two-level framework (with class and
object model) as it is available in USE. Some background on
multi-level and two-level approaches can be found in [15].
In this setting, the Property class behaves as an ontolog-

@ Springer

ical element (i.e., it describes elements from the application
domain), and invariants optionally added by the user allow
to restrict allowed values in the application domain for each
property. As an example, if one would extend our car exam-
ple with a property engine allowing values like petrol
and electric, one could guarantee by restriction through
an OCL invariant, the top property takes only values like
red and the engine property values like electric, but
the engine property will never take a value like green; an
invariant realizes the restriction of values per property type.
Please note adding OCL invariants is optional, and many puz-
zles can be built without the need for OCL. The Clue class
behaves like a linguistic element which allows our system
to impose ‘universal puzzle constraints’ over the application
objects. For the distinction between ontological and linguis-
tic elements, see [1].

As an example for the nature of our metamodel, when the
class Clue is instantiated, one does not obtain directly a clue
in the shape of a formula like forAllc : Carc.body <>
(red. But, in a well-formed puzzle model, one obtains
two objects c: Clue and p: Property with c.prem=p,
c.negatedP=true,c.conc=p,c.negatedC=true,
p.name='body’, and p.value='red’. The object
p:Property belongs to the application domain (describes
a car), whereas c : Clue models actually a constraint over
the properties which has been automatically derived accord-
ing to the puzzle rules encoded in our model invariants and
especially in the operation Thing: :valid(Clue).

In Fig. 7, you see an overview on our approach showing
the central parts and their connections. Basically, there is a
class model, namely our metamodel, including metamodel
invariants, and an object model that instantiates the meta-
model. This object model is generated by the USE model
finder based on a puzzle configuration designed by the puz-
zle developer. Optionally, domain invariants can added. The
object model may be viewed also as a class model in which
invariants correspond to the clues generated.

4 Building and playing games

The previous sections have described our formal model and
how it is integrated with the USE tool to design and build
puzzles automatically. However, the puzzles are not directly
playable in USE. Therefore, in this section we describe our
prototype that allows to build and play puzzle games in prac-
tice and the implementation that supports our approach.

4.1 Architecture
Figure 8 shows the architecture of the approach, showcasing

the different elements involved. The metamodel that supports
our approach and has been presented in Sect. 2 is made avail-

Developing configurations and solutions...

Metamodel

Metamodel Invariants

Property -: unigueNameValue
IThing :: oneThingWithCluesV alidNotBanned

Thing

A

=<InstanceOf=>|
1

- - - Puzzle
Configuration of Domain Developer
<<dependsOn==>| o
--------- Property_name = {top, body} @)

Property_value = {red, blue, green}
Property_min/max = 0..6

N

élue_min/max =0.4

Virtual Graphical View
of Object Model

Object model
Instance of Metamodel

USE

Model Finder

Car
top : Color ‘ top=red : Property l
body : Color
car1: Car ==viewOf=>
€ ——————+
top = red I topRed-bodyRed : Thing l
body =red

Three kinds of “Invariants”

Invariant [view of clue4] [

clued : Clue

| - Metamedel invariants

|toStr = body<=blue == top=red|

- Domain invariants

clued: body==blue == top=red

- Viewing clues as invariants

Fig.7 Classifying our approach: Connection metamodel, instantiation, model finder

able to the USE tool and becomes the basis around which
the rest of the elements are built (label 1). If a modeler wants
to use the metamodel to make experiments or play within
the USE tool, he or she must write a properties file and
additional constraints (label 2). This can be loaded into the
USE model finder to generate puzzle instances and can be
inspected and manipulated using the regular USE interface.
This is the approach used in the previous sections to illustrate
the internals of the approach.

To make the puzzles playable through a user interface that
hides the complexity of manipulating USE, we have built
two components (label 3). A game generator which takes
a property specification and OCL constraints and interacts
with the USE model finder to generate the corresponding
object diagram. Then, a game engine component interprets
the object diagram to make it interactive (e.g., check if a
selected ‘thing’ violates some clue). On top of this, a user
interface (label 4) has been built, which provides a way for
the user to write the property specification and the constraints,
and then a game zone where the puzzle is shown and can be
played.

4.2 Specifying puzzles
To specify puzzles, our system requires two main elements.

First, the puzzle design has to declare the allowed properties
of the puzzle in the form of property names and property

Property
specification

Game area

Constraints

User interface
@ Puzzle specification
C Game Game
generator | engine @‘
@ Meta-model L_JSE
Validator
murder.use
puzzle.use USE

Fig.8 Architecture of the implementation

values. This is currently done by using property files in the
format expected by the USE model finder in order to declare
the bounds of the constraint solver. In the example, this will
be specified with the following syntax:

Listing 1 Property specification for the running example.

Set{ ' top’, 'body"’}

Set{’'red’, 'green’,
'blue’}

Property name =
Property value =

@ Springer

M. Gogolla et al.

In addition, we need to set the bounds for the number
of objects of each type in our puzzle model. The computa-
tion of these bounds needs to be done currently manually as
explained in the previous section.

Listing 2 Model element bounds for the running example.

Thing min = 9

Thing max = 9
ThingProperty min = 18
ThingProperty max = 18
Property min = 6
Property max = 6

Clue_min = 4
Clue_max = 4

Using this configuration, the USE model finder will con-
struct an instance of the puzzle which will consist of a valid
combination of the property values. To enable the construc-
tion of more interesting puzzles, we support the specification
of additional OCL invariants which guarantee that the puz-
zle has the required shape (i.e., loaded invariant in Fig. 4).
In general, a puzzle may have several solutions. The USE
model finder is able to find them (using its scrolling feature).
However, a user might be interested on specifying exactly
one, target solution. We can use OCL invariants to specify
it. For instance, let us assume that we want to make sure that
the solution is a car that is fully red.

Listing 3 OCL invariants to restrict the values of the puzzle.

context Thing inv solution:
Thing.allInstances—exists
(t | t.banned=false
and t.value(’'top’)='red’
and t.value(’'body’)='red’

4.3 Storing and loading puzzles

A puzzle description is loaded into the USE model finder
to generate a concrete puzzle which involves things, clues
and a particular solution. This process may take from a few
seconds to a few minutes depending on the complexity of
puzzle. Therefore, we allow the user to store (and later load)
the puzzle so that it can be played repeatedly without the
burden of recomputing it.

Our tool generates puzzles using the following YAML
format,! which is also human readable so that she or he can

1 YAML (YAML Ain’t Markup Language) is a user-friendly data seri-
alization language. The specification is available at http://yaml.org.

@ Springer

easily tweak the puzzle (e.g., typically slightly modify the
clue description).

Listing 4 Excerpt of the YAML format.
things:
- id: "thingl"
description:
elements:
- body: "green"
- top: "red"
banned: true
- id: "thing2"
description:
elements:
- body: "red"
- top: "blue"
banned: true
- id: "thing3"
description:
elements:
- body: "red"
- top: "red"
banned: false
... more things

clues:
- id: "cluel"
description: |

If the body is not red
then the top is red
bannedThings:
- "thing3"
"thingb"
- "thing8"
- id: "clue4dr"
description: |
If the top is red
then the body is blue
bannedThings:
"thingl"
- "thing6"
... more clues

4.4 Playing games

To play a game, we have built a user interface (UI) which
shows the different elements of the game and allows the user
to interactively try to solve the puzzle. Figure9 shows the
user interface for playing the running example puzzle about
robbery. The UI shows the list of clues @) that the user must
take into consideration to figure out the solution. At any time
in the game, there is an active clue which is the one that
the player is using to reason about which solutions must be
discarded according to the clue. The possible solutions are

http://yaml.org

Developing configurations and solutions...

A
3 Banned by clue #3 Banned by clue #1 ? Unknown
&
body = green body = red body = green
top = red top = blue top = blue
Banned by clue #3 Banned by clue #2 ? Unknown
body = green body = red body = blue
top = green top = red top = green
A3
£/ ! ? Unknown 2 Unknown ? Unknown
body = blue body = red body = blue
top = blue top = green top =red
A
\1) @Clue#1 If thetop is not red then the top is green 'top<>red => top=green’
>
@ Clue #2 If the body is not red then the top is red 'body<>red => top=red'
m Clue #3 I the top is red then the body is blue 'top=red => body=blue’
@ Clue #4 If the top is not blue then the top is not green ‘top<>blue => top<>green'

A
4 Check
A 4

Fig.9 User interface for playing a game

shown in the form of cards (@) and €). A card has a state
which can be Unknown if it has not been banned as a solution
(@), Banned when it has been marked as an invalid solution
to the puzzle according to the current clue, or Solution which
is given to the card that the player thinks is the solution to the
puzzle (i.e., typically because it is the only one not banned).

The behavior of the UI follows the resolution strategy
described in Sect.2.2. We consider three modes or difficulty
levels for playing the game.

— Manual solving. In this mode, the player solves the puzzle
completely by herself and only checks the correctness of
the solution at the end. Figure 10 shows how the puzzle
in Fig. 9 has evolved into the final solution proposed by
the player. When the player clicks on ‘Check’ the system
uses the underlying USE model to check whether the
things banned by the player are correct or not. In case of
a mistake, the thing is marked with a red cross and the
correct ‘banning clues’ are shown, otherwise a green tick
is shown. At the same time, if the user has selected the
correct solution it is indicated with a green tick.

— Computer-assisted solving. In this mode, the user selects
a clue, then bans some of the solutions and the sys-
tem automatically provides corrections. This mode is
intended to help the user gain an understanding of how
to play.

— Computer-driven solving. In this fully automated mode,
the system demonstrates, for each clue, which things
are banned. This can be useful, for instance, to explore

a
(2) Bannedbyclue#3 v Bannedbyclue #1 v Bannedbyclue #2 v
-

body = green body = red body = green

top = red top = blue top = blue

Banned by clue #3 X Banned by clue #2 X Banned by clue #2 v

-
[/ 3 Al Actually banned by clue #2, 4 Actually banned by clue #3 body = blue
&
body = green body = red top = green
top = green top =red

P
jon! 1
Solution! v y

Banned by clue #2 v Banned by clue #4 v _

body = blue body = red body = blue
top = blue top = green top =red
@ Clue #1 I the top is not red then the top is green ‘top<>red => top=green’

@ Clue #2 If the body is not red then the top is red 'body<>red => top=red"
= Clue #3 If the top is red then the body is blue ‘top=red => body=blue’

@ Clue #4 I the top is not blue then the top is not green ‘top<>blue => top<>green’

Check

Fig. 10 User interface showing the game solution

whether a puzzle proposed by a third-party (like the ones
in Sect. 5) is correctly encoded or not.

4.5 Implementation

To implement the system, we have integrated the USE model
presented in Sect. 3 into a Java web application. The appli-
cation invokes the USE model finder programmatically to
compute the actual puzzle. To facilitate the integration, we
use the options offered by EFinder [5] since it provides a
simple API for invoking the USE model finder.

When the puzzle instance is computed, our application
processes the generated USE objects and present them in the
user interface and make the puzzle playable using the Ul
shown before.

The prototype is available at https://github.com/jesusc/
puzzle-builder.

5 Validation

In this section, we aim at demonstrating that our approach is
flexible and can be applied for various domains and different
kinds of underlying puzzle information and different kinds
of clue formulation. To this end, we develop five puzzles of
different complexity. In the first two subsections, we develop
two puzzles built by ourselves. In the third subsection, we
design three more puzzles proposed by an external party.

@ Springer

https://github.com/jesusc/puzzle-builder
https://github.com/jesusc/puzzle-builder

M. Gogolla et al.

5.1 A simple, tribute puzzle

We propose a puzzle similar to the running example but
focused on researchers. The puzzle goal is stated as follows:

N

Your task as PI in a strong modeling group is to find a
good candidate to join your team as a postdoc. Three
candidates are proposed to you by means of clues
about research interests and city of birth. Only one
of them is a really bright and young researcher who
perfectly fits your modeling team.

To design this puzzle, we have three properties: author,
topic and origin (city of birth), and we use as property values
the data of Antonio Vallecillo and the authors of this paper.
This is specified as follows:

Listing 5 Description of the properties of the puzzle

Property name =

Set{’Author’, ’'Topic’, ’'Origin’}
Property value = Set{
"Antonio’, ’‘Jesus’, ’'Martin’,

'Tooling’, ’‘Validation’,
"Dortmund’ }

'Uncertainty’,

'Malaga’, 'Murcia’,

The goal is to have thing elements like Martin,
Validation, Dortmund and Jesus, Tooling,
Murcia,butalsoAntonio, Uncertainty, Malaga
as the actual solution for the puzzle.

Using this configuration, the solver may select as a solu-
tion an unintended combination of property names and
values like Author = Antonio, Topic = Martin,
Origin = Validation. Moreover, we are interested in
forcing a particular solution, in this case the one involving
Antonio. To this end, we must specify additional OCL invari-
ants which guarantee that the puzzle has the required shape.
In this case, they will be as follows:

Listing 6 OCL invariants to restrict the values of the puzzle.

context Property inv nameFitsValue:
(name='Author’ implies
Set{’'Antonio’, ‘Martin’, "Jesus’}
—includes(value)) and
(name='Topic’ implies
Set{’'Uncertainty’, 'Tooling’,
'Validation’}
—includes(value)) and
(name='0Origin’ implies
Set{'Malaga’, 'Murcia’, 'Dortmund’}
—includes (value))

context Thing inv solutionAntonio:

Thing.allInstances—>exists
(t | t.banned=false

@ Springer

and t.value(’'Author’)=’'Antonio’
and t.value(’'Topic’)=’Uncertainty’
and t.value(’'Origin’)='Malaga’)

5.2 Complex puzzle with involved solution
derivation process

The context of the puzzle as shown in Fig. 11 comes from
a well-known fantasy novel.

Three actors are involved in a dangerous journey. The
task is to find out who of them brings a specific object
to a specific place.

Although one might know the solution (or parts of the
solution) by inspecting the offered choices (‘who’: Aragorn,
Frodo, Gandalf; ‘what’: IsildursBane, MallornSeed, Palantir;
‘where’: Caradhras, Erebor, Orodruin), the solution, namely
the right choice for ‘who,” ‘where’ and ‘what,” can be for-
mally derived from the clues in Fig. 11.

In the figure, basically a sequence of USE object diagrams
shows (1) the formal representation of puzzle choices with
Property objects, possible solutions with Thing objects,
and used clues with C1lue objects and (2) one derivation of
the solution. The upper left quarter shows the application of
cluel, the upper right of clue2, the lower left of clue3,
and the lower right of c1ue4. In each of the four quarters, the
Thing objects banned by the respective clue are indicated
as dark objects, whereas the light Thing objects are not
reached by the clue. The respective OCL query and its result
are shown as well. In the first quarter for the first clue, the
essential results for the last three clues are indicated in short
form, as well. Here, dark objects are those banned by cluel,
the Thing objects that have on its right border a rectangle
with 2 are those newly banned by clue2, Thing objects
with a 3 rectangle are newly banned by c1lue3, and Thing
objects with a 4 rectangle are newly banned by c1lue4. The
only light Thing object being not marked is the only object
with banned=false, and this object represents the puzzle
solution.

The puzzle configuration defines in the properties file the
items for the name and value of Property objects as well
as appropriate sizes for the number of objects and links for
the classes and the association. The configuration includes
one invariant that determines the solution:

context Thing inv fixSolution
cluesValid()->exists(t |

t.value(’who’)='Frodo’ and
t.value(’what’)="IsildursBane’ and
t.value(’where’)='0Orodruin’)

Developing configurations and solutions...

(Buyias «{ LzAugy szBu pZBuLY cZBUILY 0ZBUILY 6 LBUILY 2 LEUILY g LBUILY S LU & LAUILY | LBUIYY 0 LBUIYHAS <

(paasuio|ep,==(JeyanJaniea pue UINIpolQ,==(a4aya,Janiea)ioajas=-saoueisu)e Buyy 4

(BuyLnes {ghuy pRu pzAuLY ZZBuY S LBUILY £ LBUIYINES =
(uiofety =(,0yanJaniea pue auegsinplis]==(leyas, Janea)joajas=-saouelsu|e Buy) &

PIISUI0JRN==]BYAN B UINIPOIO==343LAN =SUBCY
PIISUIOEW=1EYAM <= UINIROIQ==21aUah,=d1S0Y
asjel=opajehau

gApadoid=0u02

andj=dpapehau

pApadold=waid

BN panp
3 d 4=450¥ D d 4=4S0Y
anJj=pauueq | | anu=pauueq

huiygzhuigy

huiyLf phuigy

A1 4=450¥
anJj=pauued

D | 4=450¥
anJj=pauueg

huiy g phuigy | | bun

‘DhuLy

3 d O=450)
anJj=pauueg

2D d D=4S0Y
anJj=pauueg

UI0BEI=0Ua B BUBGSINP|IS|<=]RUYA =SUBKY
UI0BRIY==0UAh <= BUBGSINPIS|<=]2YA, = S0y

andi=opajehau
2Apadoid=0u02
andj=dpapehau
gApadoid=waid

BNp.canp

31 O=450¥ D1 O=450Y
anJ=pauued | [any=pauueg
buiyszhbuiyy | | buygbung
Ad7=480Y | [Od7=AS0Y
anj=pauuedg | | ana=pauueg
UL Fchu) | | BULS touy
A 7 =450) D |7 =AS0Y
ana=pauued | | ana=pauueg
UL.0chUL) | | BUmL: L peuy

O d 7=450¥
anJdj=pauueq

L. gou

3 d v=450)
andj=pauuey

UL 5ZBu

D d v=As0)
andl=pauuey

UL PBU

O W 7 =450)
anJ=pauueg

huiyphui

3 W 7 =4508
anJj=pauueg

2 W T =4S0Y
anJj=pauuedg

(Buy)ias : {ahuny Buiy puyy azBuy szRUILY ZZBUILY 0ZBUILY ZBUIWY £ LBUILY' g LBUILY' S LBUILY | LBUILiES <
(opoad==(0ya,)anies pue Jpuejed.<=(Jeyam,Janiea)joaas=-saouejsule Buiy) &

(Buynes : {sAuy ghuy shuiy chuiy zAuyy azBuy czBui LzAuLY e LBUILY 2 LBUILY & LBUILY Z LBUIYIHES <
(auegsinpis)==(leyan)anea pue wiobely,<=(,0ya,Janiea)joa@as=<-saouesu|e Buly] 4

0P0I4==0UAN B AUBEd==]RYM,=SUBCY
OP0A4=0Uat <= JJUEEd==1eUY =SS0y
as|el=opaphau

gAuadoid=ou0a

andj=dpajehiau

gApadosd=waid

BN zanp

O WO=AS0¥ | | W O=AS0¥ | | D W O=4S0¥
ani=pauueq [| ang=pauueq || ani=pauueq
BUYL.000) | | UL az0u | | BUMLZ pouigy
O 1 9=450¥ A1 9=450¥ 2 1 O=480¥
ani=pauueq | | anig=pauueq (| ani=pauueq
buiy1-zhuig
O W F=450Y | | 3 W F=450) | | O W F=450)

ans=pauueq [| anig=pauueq| | any=pauueg
huiy] phuigy buiyZzbuigy | (buiy e pbug
O | '7=480) A7 =450) 2|7 =AS0¥
ans=pauueq [| any=pauueq| [ang=pauueq

auegsinp)

|==]BYan B UI0BR Y <=0y =SuBcy
AUBgSINplIS|=lRYAL <= LI0BRIF<=0Ua, =SS0y
as|ey=opajehau
gApadoid=0u02

and=dpajehau
2Apadoid=waid

anp: anp
O d 4=450¥ 3 d 4=450¥ D d 4=480Y
anJj=pauueq andi=pauueq | [ana=pauueg
huiyshuigi Uil -EZhuigy Uil] LU}
O W 4=450¥ S W 4=4S0Y | [O W 4=4S0Y
andl=pauueq | | aha=pauued | | sni=pauueq
UL Chu)

O d O=450¥ 3dO=4S0¥ | | D dO=450¥
ana=pauued | | anu=pauueq || ani=pauueq
Uiy 1 ghuigy huy] ~Zzhuigy Uiy g huigy
O WO=4S0Y | | W O=4S0¥ | [O W O=450¥
any=pauueq | | anu=pauueq || ang=pauueq
UM L.920uI) | | BULZ Poui

Fig. 11 Puzzle configuration and solution for fantasy novel

pringer

As

M. Gogolla et al.

Ob Object diagram

Class invariants

thinal-Thin Invariant |Sat|s
.| Clue::premConcEQ_negatedEQ true
hanned=false CI0o - inkuaC) 1

#AoStr=null 2 ue::unique ule _ : | true

Fro y..sameNumining (+0 nactive
\ Property::uniqgueNameValue true
property15:Property | | property12:Property | | propertyS:Property ™ property2:Property Thing::equationt true
name="A' name="B" name="C* name=D" Thing::equation2 true
el et =P Talie="3. Thing::oneThingWithCluesValidNotBanned true
Thing::sameNumProperty | true
- Thing::thingsWithCluesValid_EQ_thingsNotBanned| true
gp Object diagram Thing::uniqueProperty | true
Thing::uniquePropertyName | true

context Thing inv uniqueValuePerProperty:
property-=forali(p1 p2 | p1<=p2 implies p1 value<=p2 value)

context Thing inv equation?:
tolnt(value('B"))+tolnt(value('D")) = tolnt(value('A"))+2

context Thing inv equation2:
tolnt(value("A"))+tolnt(value('D)) = tolnt(value('B"))+4

AN

Thing::uniqueValuePerProperty
§Cnstrs. OK. (16ms)

Cb Object diagram

AB,C,D,E alldistinct

B+D = &+2

84D = B+4

FE E I [Link count

[= oObject count

Class & Objects Association # Links

Clue] ThingProperty NG 4
Property NN 1 ©
Thing W1

=

Fig. 12 Puzzle with four integer variables and two equations

5.3 Puzzles stemming from literature

In the book [10], a large collection of puzzles is modeled
in first-order logic. In order to show that our approach for
puzzle modeling is capable of expressing puzzles like the
ones in [10] and to further validate our approach, we have
chosen three typical puzzle examples and explain how they
can be formulated in our approach. The examples come
from three different book chapters (Micro-arithmetic Puz-
zles, Love and Marriage, Grid Puzzles). These examples
illustrate how analogous puzzles could be effectively mod-
eled using our methodology.

The first puzzle from the book is displayed basically in
the form of an object diagram in Fig. 12. It uses four inte-
ger variables and requires to find substitutions for them such
that particular relationships between the variables values are
satisfied. All substituted values have to be distinct, have to
come from the interval 1. . 4, and the two equations shown
in the lower right of Fig. 12 have to hold. In order to han-
dle this puzzle, we had to slightly extend our class model
to be able to express numerical conditions, since values are
expressed in the original model as strings: we extended the
class model with the operation toInt that converts a string
to an integer, provided the string represents an integer. The
four variables are expressed as four properties, the integer
interval as attribute restrictions in the properties file, and the
distinctness requirement and the two equations are stated as

@ Springer

invariants. As can be seen from the found solution, the book
puzzle parts could be successfully stated, and the proper solu-
tion was found.

In this model and in the following two, there is only one
Thing object, i.e., only one possible solution, that must be
found. Formally, there are no Clue objects, since the clues
are given in the puzzle formulation and are not expected
to be constructed. The already formulated puzzle clues are
expressed as invariants that the Thing object, which is to be
constructed and that possesses attribute values and links, has
to satisfy. We emphasize that the puzzle formulations that
we have developed for the book puzzles are instantiations of
our puzzle metamodel, whereas in the book each puzzle is
newly formulated with an ad-hoc model, not as a metamodel
instantiation as done in our approach.

The second puzzle from the book is displayed basically
in the form of an object diagram in Fig. 13. It shows a 3x3
matrix of Integer variables, requires the value 5 to occur in
the center, and each of the rows, columns and diagonals to
have the sum 15. As before, the variables from the matrix
are expressed as properties, integer ranges as attribute restric-
tions in the properties file, and the eight equations for rows,
columns and diagonals are stated as invariants, where in
Fig. 13 from the eight equations only one equation is shown
in an exemplary way. From the found solution, one learns
that the book puzzle parts could be properly expressed, and
again the right solution was achieved.

Developing configurations and solutions...

gb Object diagram

Class invariants

property20:Property
name='c1'
value="8'

property34:Property
name='c2' name='c3'
value='3" | value='4'

propertyB:Property

Puzzle 85

banned=false
ARoStr=null
/ XN

\

property18:Property property68:Property || property73:Property
name='c4' name='c5' name='c6'
value="" value="5" | value="9"

Invariant
Clue::premConcEQ_negatedEQ
Clue::uniqueClue

Property::sameNumThing (+d
Property::uniqueNameValue
Thing::c5

Thing::column1
Thing::column2
Thing::column3
Thing::diagonall
Thing::diagonal2

z

property49:Property
name='c?'
value='6"

property57:Property
name='c8'
value="7"

name='c9'
value="2"

propertyd4:Property

Thing::oneThingWithCluesValidNotBanned
Thing::row1

Thing::row2

Thing::row3

Thing::sameNumProperty

Sb Object diagram

Thing::thingsWithCluesValid_EQ_thingsNotBanned

context Thing inv uniqueValuePerProperty:
property-=forali(p1 p2 | p1=<=p2 implies p1 value==p2 value)

context Thing inv c5: value('c5")="5'

context Thing inv row1:
tolrt(value('c1"))+tolrt(value('c2))+olnt(value('c3)=15

Thing::uniqueProperty

Thing::uniquePropertyName

Thing::uniqueValuePerProperty
nstrs. OK. (31ms)

ob Object diagram

Class & Objects Association # Links

clc2c3 --allcidistinct
cdcScB --c5=5
c7cdco

Clue |0
Property | [N -1
Thing I

Fig. 13 Puzzle with matrix of integer variables and eight equations

The third puzzle from the book is pictured basically in the
form of an object diagram in Fig. 14. It is about guessing the
name of a particular person at a dinner meeting where hints
are given regarding the order that persons sit at a round table.
Opposed to the previous two models with focus on numbers,
properties express characteristics of persons, namely the gen-
der of the person and the person sitting left to the respective
person. In the properties file, the person names and values
for gender as well as the number of Property objects and
links are stated. In order to capture the cyclic nature of the
underlying information, i.e., every person has a left neighbor,
some Property objects show the same domain (namely,
the names of the persons) for the name and value attributes.
Invariants formulate the puzzle conditions as (1) proper spec-
ification for the gender characteristic, (2) the requirement
that women and men alternate, and (3) particular neighbor
requirements for two persons (namely Anna and Roger).
The puzzle answer is here formulated as an OCL query which
yields a particular result. From the found formulation, we see
that the puzzle parts from the book could be expressed, and
also the solution from the book was reached.

ThingProperty I INEG 5

c1+c2+c3=15
cl+cd+c?=15
c1+c5+c9=15

cd+c5+c6=15
c2+c5+c8=15
c7+c5+c3=15

c7+c8+c9=15
c3+cB+c9=15

In Fig. 15, we show how the cyclic information structure
for the example could be represented in a USE model as
an extension of our puzzle metamodel. As the persons are
expressed with Property objects, one could introduce a
derived, reflexive association on the class Property for
the person sitting left to another person. The object model
displays the achieved solution using this additional associa-
tion.

5.4 Puzzles stemming from the web

In this section, we show that our approach can also be used to
model puzzles available in the web and consumed by actual
users. In particular, we focus on the type of puzzles of https://
www.zebrapuzzles.com (puzzles in the style of the Einstein
Riddle ?).

By using an example, Fig. 16 gives an impression how
puzzles of the zebrapuzzles website look like and how
they would be modeled in our approach. Four parts are

2 The Einstein’s Riddle or Zebra Puzzle is logical puzzle whose cre-
ation is attributed to Albert Einstein (https://en.wikipedia.org/wiki/
Zebra_Puzzle

@ Springer

https://www.zebrapuzzles.com
https://www.zebrapuzzles.com
https://en.wikipedia.org/wiki/Zebra_Puzzle
https://en.wikipedia.org/wiki/Zebra_Puzzle

M. Gogolla et al.

Ob Object diagram

N property10:Property || property45:Property ropertyB:Property || propertyd1:Property
Puzzle 79 name='AnnaG"' name='Anna' name="Roger' name="RogerG'
value=""Woman' value="Jim' value="Anna' value="Man'

/

property15:Property || property26:Property thing1: Thing property17:Property || propertyS:Property
name="JimG' name="Jim" banned=false name="Esther' name="EstherG'
value="Man' value="Helen' AoStr=null value='Roger' value=""Woman'

/

property12:Property || property33:Property

property36:Property

Example valueleft name="HelenG' name="Helen' name="Yictor' name="YictorG'
Roger left.left ~ Jim value=""oman' value="Yictor' value="Esther' value="Man'

property13:Property

Cb Object diagram

context Property inv nameFitsValue:
-------- value('AnnaG') ~ Anna.gender --------
(Set{'AnnaG' 'EstherG' 'HelenG','JimG' 'RogerG',"VictorG' }-=includes(name)
implies Set{"voman' 'Man'}-=includes(value)) and
------ value('Anna’) ~ Anna.left --------
(Set{'Anna',Esther' 'Helen'Jim' 'Roger''Victor' ;-=includes(name)
implies Set{'Anna’,'Esther' 'Helen','Jim''Roger','Victor' }-=includes(value))

context Thing inv onLeftAllPeopleOnce:
Set{value('Anna") value('Esther') value('Helen"),
value('Jim'), value('Roger"), value('Victor')}
= Set{'Anna','Esther' 'Helen','Jim' 'Roger''Victor'}

context Thing inv genderFits:
Set{value('AnnaG") value('EstherG") value('HelenG") j=Set{"Woman'} and
Set{value('JimG") value('RogerG"), value('VictorG') j=Set{'Man'}

context Thing inv womanHasManOnLeft:
Set{value('Anna’) value('Esther') value('Helen") }=
Set{'Jim''Roger','Victor'}

Class invariants
Invariant Satis’
Clue::premConcEQ_negatedEQ true
Clue::uniqueClue true
||Property::nameFitsValue true
Property::sameNumThing (+d inactive
lProperty::uniqueNameValue true
Thing::genderFits true
Thing::onLeftAllPeopleOnce true
Thing::oneThingWithCluesValidNotBanned true
Thing::requirements4AnnaJlim true
Thing::sameNumProperty true
Thing::thingsWithCluesValid_EQ_thingsNotBanned| true
Thing::uniqueProperty true
Thing::uniquePropertyName true
Thing::womanHasManOnLeft true

§Cnstrs. OK. (62ms)

[& object count 77 &' [H | | [E Link count
context Thing inv requirements4Annadim: -- Anna left left left ~ Victor Class # Objects Associgtion # Links
(let L1=value('Anna") in let L2=value(L1) in value(L2)="Victor") and Clue |0 a ThingProperty 12
(let L1=value('Roger") in value(L1)="Jim") -- Roger left left ~ Jim l;;?ﬁ:rty 1
== == =1
[E2) Evaluate OCL expression Sh Object diagram

Enter OCL expression:
Set{’Anna’,'Esther’,'Helen’,Jim''Roger’, Victor}->select(HH |
let L1=thing1.value(HH) in
let L2=thing1.value(L1) in
let L3=thing1.value(L2) in
let L4=thing1.value(L3) in thing1.value(L4)="Esther’)

Browser

Result: Clear

Set{'Roger?} : Set(String)

-- HH left left left left left=Esther | Close

i 5|

Yesterday evening, Helen and her hushand invited their neighbours (two
couples) for a dinner at home. The six of them sat at a round table. Helen
tells you the following: "Victor sat on the left of the woman who sat on the
left of the man who sat on the left of Anna. Esther sat on the left of the man
who sat on the left of the woman who sat on the left of the man who sat
on the left of the woman who sat on the left of my husband. Jim sat on the
left of the woman who sat on the left of Roger". The guestion: What is the
name of Helen's hushand?

Fig. 14 Puzzle with three couples sitting at round table

shown: The website puzzle structure in the form of a table to
be filled by the user, the representation of the solution table
as a UML object diagram in our model, the verbal clues given
to the user and the representation of the clues in the form of a
complex OCL invariant with each of the 13 clues formalized
as a conjunctional part in an existentially (one) quantified
OCL formula.

The puzzle involves four different men characterized by
four properties: a shirt with a unique color, a unique first
name and a food order for a unique soup and a unique meat
dish. The men are arranged from left to right, and, accord-

@ Springer

ingly, one can think of the properties being arranged in line,
e.g., there is the soup in the third position. The property values
are available through drop-down menus. The table already
shows the puzzle solution except the second soup. However,
this soup is already determined as the other three soups have
already been selected. This second soup is represented in
the object diagram in the second part of the figure through
the property object property37 with name value Soup2.
The object diagram layout follows the table.

The UML object diagram shows how the puzzle solution is
represented as a Thing object with links to sixteen property

Developing configurations and solutions...

Cb Obiject diagram

bropertydS:Property | jo¢ property6:Property

name='Anna’' — — —|name='Roger'
value="Jim' value="Anna'
N\ feft
N
left T
property26:Property property1 7:Property
name="Jim' name="Esther'
value="Helen' value='Roger'
N y: Neft

feft N

property33:Property
name="Helen' = = 1—“
value="Victor' e

property36:Property
| name="Victor'
value="Esther'

association Left between
Property [0..1] role right
Property [0..1] role left derived =
Property allnstances-=any(p | p thing-=notEmpty and p.name=self value)
end

Fig. 15 Domain-specific model extension for capturing example char-
acteristics

objects. Thus, for example, there are four Shirt Property
objects, namely for Shirtl, Shirt2, Shirt3 and Shirt4 holding
appropriate values. In our model, there are 64 Property
objects, as there are 16 properties (Shirt 1..4, Name 1..4,
Soup 1..4, Meat 1..4) each capable of holding 4 values: 16
4 = 64. In our first puzzle example for a car with three
different top and body colors, we have explicitly shown all
possible nine solutions in Fig. 1. In this example, we would
roughly obtain 4! x 4! 4! % 4! = 331.776 different solutions,
a number unmanageable to display and to construct in our
approach.

The third part of Fig. 16 displays the verbal clues presented
to the user. The clues directly constrain (1) single fields in
the table (e.g., using formulations as ‘in the last position’),
(2) lines by particular restrictions (e.g., ‘at one of the ends’),
(3) the table by requiring particular patterns to occur (e.g.,
‘immediately after’) or (4) neighbor or successor properties
and values (e.g., ‘somewhere after’). These verbal formula-
tions are made precise by stating them in OCL.

The fourth part shows the clues as parts of a complex
OCL invariant. The clues partly directly refer to single prop-
erties, e.g., “The man who ordered beef is in the last position’
roughly corresponds to ‘Meatd4=beef.” The clues partly refer
to property combinations, e.g., ‘The person who ordered corn
soup is immediately after Charles’ roughly corresponds to
‘(Namel = Charles and Soup2 = CornS) or (Name2 = Charles
and Soup3 = CornS) or (Name3 = Charles and Soup4 =
CornS).” We have marked three of the 13 clues in the verbal
part and correspondingly marked them in the formal rep-
resentation as an OCL invariant for easy identification. The
OCL formulation nicely points out that there are six used clue
patterns. Note that some of the clues cannot be expressed in
our clue metamodel as there we only consider simple impli-
cations, but not general first-order formulas (e.g., a series of

disjunctions of conjunctions as in the above ‘Charles’ and
‘CornS’ example).

In conclusion, we can say that we are able to model puzzles
like the ones from zebrapuzzles and express the clues
as constraints. Proceeding this way, we can check whether
among a number of existing Thing objects a solution exists,
but we currently cannot generate clues like the ones occur-
ing in the example as this would require an extension of our
current (clue) metamodel. We emphasize, however, that the
basic logic behind zebrapuzzles can be formulated in
our approach, but some approach limits become apparent.
However on zebrapuzzles, manually constructed puz-
zles and solutions are presented whereas we automatically
can construct puzzles, solutions and clues all restricted with
constraints (e.g., single solution or multiple solution).

5.5 Student survey on logical puzzles

In order to obtain feedback on our puzzle approach, we per-
formed a survey among students participating in a UML and
OCL course. The survey was performed after the end of the
course and before the oral examinations. The survey with
nine questions presented two puzzles and was asking about
(1) the solutions and derivations of solutions [4 questions for
puzzle A and 2 questions for puzzle B], (2) the applied logical
laws in the solution finding process [1 question] and (3) the
difficulty and the usefulness of logical puzzles [2 questions].

Both puzzles were about a scenario where a murder crime
had to be solved. The murderer was either the Butler, the
Duke or the Countess. The murder happened either in the
Library, the Parlour or the Garden. The murder either used
a Rope, a Gun or a Knife. Two different sets of clues both
possessing a unique solution and presented in the form of
object diagrams with Clue objects from our metamodel
were given. Both puzzles are displayed in Fig. 17 with the
derived attribute / t oSt r showing the clue in compact form.
In the figure, the first puzzle also presents on the right side
three derivations for a potential solution that is shown in the
bottom line. Two of the three derivations are erroneous and
make unacceptable conclusions. The second derivation is the
correct one. Results and intermediate steps of the derivations
are pictured in comment notes on the right side.

All questions were presented along with multiple-choice
questions and answers. The questions asked were:

Which solution is correct for puzzle A?

Which is the first incorrect step in derivation 1?
Which is the first incorrect step in derivation 2?
Which is the first incorrect step in derivation 3?
Which clue order is good for solving puzzle B?
What is the solution for the puzzle B?

Which logic law must be applied for puzzle solving?
Rank the difficulty of the logical puzzles.

PRI WD =

@ Springer

M. Gogolla et al.

Man #2 Man #3 Man #4
yellow v white W
William v Charles v
v tomato v
lamb v sausage v beef v

H Property1:Property Property8:Property Property11:Property Property14:Property
H name="Shirt1" name="Shirt2" name="Shirt3" name="Shirt4'
jmm——- value="blue' value="yellow" value="white' value='purple’
1 1 s
: Property18:Property Property24:Property Property25:Property Property31:Property
H name="Name1"' name="Name2' name="Name3" name="Name4'
: ----- value="Kenneth' value="William' value='Charles' value="Vincent'
1 ra
H Property35:Property Property37:Property Property44:Property Property46:Property
H | SLOBErY oo FTORERY | | Eropettidi Probeily | | Bty d Frap ety | | Etop=ysb Poh el |
: name='Soup1" name='Soup2' name='Soup3' name='Soup4"
fommme value="minestrone' value="clam chowder' value=tomato' value='corn'
1 ¥
: Property52:Property. Property54:Property PropertyS9:Property / Property61:Property
! e [nEme="Meat1" name="Meat2' name="Meat3" name="Meat4"
value=turkey" value="lamb' value="sausage' value="beef'
N
Thing Solution: Thing
banned=null
#oStr="Me1:tur;Me2:lam;Me3:sau;Me4: bee;Na1:Ken; Na2:wWil;Na3: Cha;Na4: Vin; Sh1:blu; Sh2:yel; Sh3:whi; Sh4: pur; So1:min; So2: cla; So3:tom; Sod:cor;'

{The man who ordered Beef is in the last position.i The person wearing the Purple shirt is somewhere to the right of the
person wearing the White shirt.

The person who ordered Tomato soup is in the third position.

2 = : i The man who ordered Minestrone soup also ordered Turkey.
The man who ordered Sausage is immediately after William.

r - The man who ordered Turkey is at one of the ends.
1The man who ordered Beef is at one of the ends. |

The person wearing the White shirt is next to the person wearing the

The man wearing the Purple shirt is named Vincent. .
Purple shirt.

The person wearing the Yellow shirt is in the second position. s
P 9 st posit The person who ordered Lamb is next to the person who ordered

iThe person who ordered Corn soup is immediately after Charles | Sausage.

Kenneth is in the first position.

Thing.allInstances->one (t|

i(_t.value('Meatd')='beef') and;

(t.value('Soup3')='tomato') and

((t.value('Namel')='William' and t.value('Meat2')='sausage') or
(t.value ('Name2')='William' and t.value('Meat3')='sausage') or
(t.value ('Name3')="'William' and t.value('Meatd')='sausage')) and

1(t.value('Meatl')='beef' or t.value('Meatd')='beef') and !

((t.value('Shirtl')='purple' and t.value('Namel')='Vincent') or
(t.value ('Shirt2')='purple' and t.value('Name2')='Vincent') or
(t.value ('Shirt3')='purple' and t.value('Name3')='Vincent') or
(t.value ('Shirtd')='purple' and t.value('Named')='Vincent')) and

(t.value('Shirt2')='yellow') and

((t.value('Namel')='Charles' and t.value('Soup2')='corn') or
(t.value ('Name2')='Charles' and t.value('Soup3')='corn') or
(t.value ('Name3')='Charles' and t.value('Soup4d')='corn')) and

((t.value('Shirtl')='white' implies Set{t.value('Shirt2') ,t.value('Shirt3') ,t.value('Shirtd')}->

includes ('purple')) and
(t.value ('Shirt2')='white' implies Set{t.value('Shirt3'),t.value('Shirtd') }->includes('purple')) and
t.value('Shirt3')='white' implies t.value('Shirt4')='purple') and

((t.value('Soupl')='minestrone' and t.value('Meatl')='turkey') or

e

ts

(t.value('Soup2')="minestrone' and value ('Meat2')="'turkey') or
(t.value ('Soup3')="minestrone' and value ('Meat3')='turkey') or
(t.value('Soupd')="minestrone' and t.value('Meatd')='turkey')) and
t.value ('Meatl')='turkey' or t.value('Meatd')='turkey') and
(Set{t.value('Shirtl') , t.value('Shirt2') }=Set{'white', 'purple'}) or
(Set{t.value('Shirt2') ,t.value('Shirt3') }=Set{'white', 'purple'}) or
(Set{t.value ('Shirt3') ,t.value('Shirtd') }=Set{'white', 'purple'})) and
((Set{t.value('Meatl') , t.value('Meat2') }=Set{'lamb', 'sausage'}) or

(Set{t.value ('Meat2') ,t.value('Meat3') }=Set{'lamb', 'sausage'}) or

(Set{t.value('Meat3') ,t.value('Meatd') }=Set{'lamb', 'sausage'})) and
(t.value('Namel')='Kenneth'))

—_~—~

Fig. 16 Zebra Puzzle structure and clues on UI and in our internal metamodel representation

@ Springer

Developing configurations and solutions...

Ob Object diagram

Ob Object diagram

prem=propertyd
negatedP=false
conc=propertyd
negatedC=false
AoStr="who=Butler'
Mans="who<=Butler'

clue2:Clue

clue3:Clue

negatedP=true

prem=propertys

conc=propertyd

clue2:Clue
prem=propertyd
negatedP=false
conc=propertyd
negatedC=false
AoStr="who=Butler'
hans="who==Butler'

clue3:Clue

| where=<=Garden == where=Library (2) ‘ﬁ

prem=propertys
negatedP=true
conc=propertyd

l who=Butler == where=Garden (2)5

negatedC=true
#oStr="where=>Garden => who==Butler'
hans="where=>Garden & who=Butler'

N
where=Library (3) 5

cluet:Clue

prem=property?

negatedP=true

conc=property9

negatedC=false

foStr="how==Rope == where=Library'
Mans=how==Rope & where==Library'

| hows=Rape == how=Gun (4) 'j

how=6un (5)

Derivation ButlerLibraryGun ﬁ

negatedC=true
AoStr="where=>Garden =» who==Butler'
hans="where==Garden & who=Butler'

cluet:Clue
prem=property?
negatedP=true
conc=property9
negatedC=false
foStr="how==Rope == where=Library'
hans="how=>Rope & where==Library'

D
where=Garden (3) 5

where==Library == how=Rope (4)'ﬁ

| Derivation BullerGardenRopelﬁ

who in

{Butler Duke Countess}
where in

{Library Parlour Garden}
how in

{Rope Gun Knife}

gb Object diagram

e E

clue2:Clue
prem=propertyd
negatedP=false
conc=propertyd
negatedC=false
AoStr="who=Butler'
Jhans="whoz=Butler'

who=Butler (1) 1)

clue3:Clue

prem=propertyt

negatedP=true

conc=propertyd

negatedC=true

AoStr="where=>Garden => who=>Butler'
hans="where=>Garden & who=Butler'

I who=Butler == where=Garden (2) B]

where=Garden (3) 5

cluet:Clue
prem=property?
negatedP=true
conc=property9
negatedC=false
foStr="how==Rope == where=Library'
Mans="how==Rope & where==Library'

I hows==Rope == how=Knife (4) [ﬁ

how=Knife (5))

I Derivation EluﬂerGardenKnife'ﬁ

Cb Object diagram

Cb Object diagram

Cb Object diagram

cluel:Clue
prem=property9
negatedP=false
conc=propertyd
negatedC=false
foStr="where=Garden'
hans="where<=Garden'

clue3:Clue

prem=propertyd

negatedP=true

conc=property?

negatedC=false

foStr="who==Duke == where=Library'
bans="who<=Duke & where==Library'

cluet:Clue
prem=property9
negatedP=false
conc=property9
negatedC=false
AoStr="where=Garden'
hans="where<=Garden'

clue2:Clue clue2:Clue clue3:Clue
prem=propertyt prem=propertyd prem=propertyd
negatedP=true negatedP=true negatedP=true
conc=propertyd conc=propertyd conc=property7?
negatedC=true negatedC=true negatedC=false
foStr="how==Knife == who==Duke' AoStr="how==Knife => who==Duke' foStr="who==Duke == where=Library'
Mans="how==Knife & who=Duke' Mans="how==Knife & who=Duke' Mans="who==Duke & where==Library"'

clue3:Clue

prem=propertyd

negatedP=true

conc=property?

negatedC=false

foStr="who==Duke == where=Library'
hans="who<=Duke & where==Library'

cluet:Clue
prem=propertyS
negatedP=false
conc=propertyS
negatedC=false
foStr="where=Garden'
Jhans="where<=Garden'

clue2:Clue
prem=propertys
negatedP=true
conc=propertyd
negatedC=true
#oStr="how=>Knife == who==Duke'
hans=how==Knife & who=Duke'

Fig. 17 Two clue sets both with a unique solution for a murder puzzle: Puzzle A and Puzzle B

@ Springer

M. Gogolla et al.

Fig. 18 Overview student
responses to questions 1, 2, 3, 4
with correct answers marked

T~y

9. Rank the usefulness of logical puzzles for teaching.

For questions 2—4, the multiple-choice answers included an
option ‘no incorrect step.” For question 7, a choice between
three important logical laws was offered. Although the sur-
vey is based on multiple-choice questions, we believe that
the questions are formulated on a high technical level, and
it seems unlikely that by chance only correct answers are
picked.

The student responses are shown in overview form in
Figs. 18, 19 and 20. For the first seven questions, there is
one correct answer, the other answers are wrong. Basically,
and as expected, there is a relative majority in the student
answers for the right answers. However, there is one excep-
tion: in question (7) about which logical law has to be applied
in the puzzle solution process there is a majority for the De
Morgan law, not for the law stating implication equivalence.
Of course, this question is not directly about a concrete puz-
zle, but it is about abstract principles standing behind formal
reasoning. As we know, a large number of students in media
informatics being not trained in formal matters attended the
course, we suspect that this is the reason for this fact. Other-
wise the student answers are basically as expected and do not
present serious surprises. The two ranking questions reveal
that the students found the puzzles relatively hard to solve.
And there is a majority in regarding such logical puzzles as
important or at least as useful for Computer Science educa-

@ Springer

o
® @3
® (4
® (5)

® no incorrect step

(==

48.7%

L9

o
@ ButlerLibraryGun 02
@ ButlerGardenRope ® 3
© ButlerGardenKnife ® 4
® (5)

@ no incorrect step

o1
@2

® (3

.y
® 5

@ no incorrect step

® clue1, clue2, clue2
® cluel, clue2, cluet

O cluel, cluel. clue2

@ Library, Duke, Knife
@ Gsrden, Duke, Rope

) Garden, Duke, Knife

@ not (A and B) _is_equivalent_to_ (not A) or (not B)

|® A=>B _is_squivslent_to_ (not B) => (not A)|

@ Aor(not A) _is_equivalent_to_ TRUE

Fig. 19 Overview student responses to questions 5, 6, 7 with correct
answers marked

Developing configurations and solutions...

[+-]

Fig.20 Overview student
responses to questions 8, 9

7 (46.7%)

5 (33.3%)

8
4
2

0 (0%) 0 (0%)
0

1

easy

8

1 (6.7%)

o

1
irrelevant

tion. In the respective course, which covers a wide range of
topics from basic UML to operation details of OCL, we did
not put a high emphasis on using puzzles. Probably a better
approval of puzzles would result, if teaching with puzzles
would be better emphasized.

Survey summary: Fifteen students participated in the sur-
vey. For the single questions and stated percentages, one can
derive the concrete numbers. The educational context for the
survey was that the survey took place on a voluntary basis for
the students after the lectures and before the oral examina-
tion. Twenty-five students were enrolled in the course, which
means that ten enrolled students did not participate in the sur-
vey. The participating ones probably expected further hints
for the oral examination that was already scheduled.

5.6 Closing remarks on validation

The examples from this section on validation show that the
approach is capable of formulating a large spectrum of puzzle
situations, from numerical problems to discrete graph-like
structures with cyclic information reference. In particular,
nontrivial puzzles that come from the literature or from
the web could be realized or at least be modeled with the
approach.

The student survey indicates that students with back-
ground on UML/OCL are, in general, able to interpret our
puzzle models. Moreover, the survey indicates that teaching
with puzzles is accepted well by students.

1 (68.7%)

hard

5 (33.3%)

1 (8.7%)

w
IS

5
important

6 Related work

In this section, we present related work. It is organized in
four categories, namely, works about puzzles in education
(Sect. 2.1), works about automatically solving puzzles (Sect.
2.2), approaches to (automatically) develop puzzles (Sect.
2.3) and finally we describe how logical puzzles are used as
part of businesses (Sect. 2.4).

6.1 Puzzles in education

The use of puzzles is a well-known approach to the teaching
of problem-solving skills and athematical thinking [17], [7].
The nature and difficulty of the puzzles vary depending on
the target players: from school grade students to engineering
students.

For instance, Parsons puzzles are targeted to computer
science students since the task is to reorder a set of statements
to form a target programming assignment. For this kind of
puzzles, both solvers [14] and builder [6] tools have been
proposed.

Puzzles can also be used to introduce complex topics
to students. For instance, quantum gates are introduced to
middle-school and high-school students through a dedicated
puzzle game [16].

Puzzles have been used to teach first-order logic. For
instance, the ‘Introduction to logic’ course at Stanford uses
a variant of the MineField game .> In [11], a variant of this

3 http://logic.stanford.edu/intrologic/extras/minefield.html.

@ Springer

M. Gogolla et al.

approach in which the system also generates new instances
of the game automatically is put forward.

In our case, our goal is to automatically build logic-based
puzzles which could be played by students (e.g., high-school
students). These puzzles can also be targeted to children if the
complexity of the solution and clues is small and the appro-
priate gaming experience (e.g., physical cards) is provided.

6.2 Solving puzzles

The topic of solving puzzles has traditionally been addressed
by using solvers of different types (e.g., SAT or SMT solvers).
In this case, given a puzzle the complexity lies on properly
encoding the puzzle using the underlying formalism. For
instance, in [10] several puzzles along with their encoding in
a logic formalism are discussed. In this work, we use some
of these puzzles to show the applicability of our approach.

The topic of solving puzzles has recently gained interest
due to the new Al models, since puzzles along with solutions
can be used to test the reasoning capabilities of large language
models (LLMs). Also, LLMs can be used as an interface to
interact with the puzzle [12]. In our case, our system could
be used as a test generator (by generating different puzzle
instances) to analyze the capabilities of LLMs for solving
logic puzzles.

6.3 Developing puzzles

The design and development of new puzzles is a concern
complementary to solving them. In this respect, some DSLs
have been proposed to specify puzzles and their gaming con-
text. For instance, EGGG [19] is DSL which allows the user
to encode games, and it generates an interface to play with
them (e.g., the rock—paper—scissors). However, the system is
primarily a code generator, and it does not really ‘understand’
the games.

In [3], a DSL is proposed to encode human strategies for
solving logical puzzles like Sudoku or Nonograms. The goal
in this case is to understand how players address complex
games. This is done through program synthesis techniques.
In our case, our generation of C1lue objects can also be seen
as program synthesis procedure.

Ortiz et al. [18] proposed a system to generate Nonograms
puzzles based on color images.

To the best of our knowledge, our approach is the first
approach based on software modeling foundations to build
logical puzzles, which incorporates the automatic generation
of puzzle instances via constraint solving.

6.4 The industry of logical puzzles

Although logical puzzles have a tradition dating back many
centuries [20] and many well-known logical puzzles have

@ Springer

been created (e.g., the zebra puzzle also known as Einstein’s
Riddle), there is still an active industry which produces new
puzzles and publishes them in magazines, books and dedi-
cated websites.

As aconcrete example, the website https://www.brainzilla.
com/ offers a large number of puzzles of different kinds. Sev-
eral of them can be classified within the category of logical
puzzles since they are built on top of clues and logical rela-
tionships. It has the so-called ‘zebra puzzles’ (the type of
puzzles shown in Sect. 5.4), logic grid puzzles, Suduku-like
puzzles and logical equations.

Our approach is particularly relevant for logic grid puzzles
which we can model and generate automatically with our
tool. According to personal communication with the owner of
the website, the logic grid puzzles are constructed manually
by skilled game player. This means that our approach could
be an alternative to build this type of puzzles. On the other
hand, we have shown that our approach is expressive enough
to model Zebra Puzzles and the question of how to tune an
OCL solver to automatically construct a concrete instance
could be become a relevant benchmark to move this type of
tools forward.

7 Conclusion and future work

This contribution has proposed an approach for teaching
formal reasoning with logical puzzles. The puzzle, which
comprises its vocabulary, its structure and its clues, has been
described with a UML model including OCL constraints.
The approach can be used in various ways, for example, for
formulating a given puzzle and finding a solution, and it can
be used to automatically construct a new puzzle and clues.

Future work can be performed in a number of direc-
tions. Different sets of clues possess different properties with
regard to finding a solution: (a) we have applied an exclusion
approach by banning possible solutions until only one solu-
tion is left; (b) we would like to study in the future a forward
reasoning approach in which ‘new’ facts are constructed until
a solution is found. Currently, we do not support clues in
full first-order logic, but clues are restricted to equations,
inequations or simple conditionals. We would like to extend
this to cover also negation, conjunction and disjunction over
more than two ground formulas. Instead of having untyped
properties, one could provide typed properties making cer-
tain domain invariants dispensable. The user interface of
the current implementation could be improved by advanced
interaction options. For example, one could generate visual
representation for puzzle models. More case and in particular
user studies must be performed in order to consolidate and
to bring the approach to a satisfying degree of maturity.

Funding Open Access funding enabled and organized by Projekt
DEAL.

https://www.brainzilla.com/
https://www.brainzilla.com/

Developing configurations and solutions...

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Atkinson, C., Kuhne, T.: Model-driven development: a metamod-
eling foundation. IEEE Softw. 20(5), 3641 (2003)

2. Bell, T.,Rosamond, F., Casey, N.: Computer science unplugged and
related projects in math and computer science popularization. The
multivariate algorithmic revolution and beyond: Essays dedicated
to Michael R. Fellows on the occasion of his 60th Birthday pp.
398-456 (2012)

3. Butler, E., Torlak, E., Popovi¢, Z.: Synthesizing interpretable
strategies for solving puzzle games. In: Proceedings of the 12th
International Conference on the Foundations of Digital Games,
pp. 1-10 (2017)

4. Cabot, J., Gogolla, M.: Object Constraint Language (OCL): A
definitive guide. In: M. Bernardo, V. Cortellessa, A. Pierantonio
(eds.) Proc. 12th Int. School Formal Methods for the Design of
Computer, Communication and Software Systems: Model-Driven
Engineering, pp. 58-90. Springer, Berlin, LNCS 7320 (2012)

5. Cuadrado, J.S., Gogolla, M.: Model finding in the EMF ecosystem.
J. Object Technol. 19(2), 10-1 (2020)

6. Deitrick, E.: Graphical parsons puzzle creator: Sharing the full
power of 2d parsons problems through a graphical, open-source
online tool. In: Sherriff M., Merkle L.D., Cutter P.A., Monge
A.E., Sheard J.(eds.) SIGCSE ’21: The 52nd ACM Technical
Symposium on Computer Science Education, Virtual Event, USA,
March 13-20, 2021, p. 1379. ACM (2021). https://doi.org/10.1145/
3408877.3439548

7. Falkner, N., Sooriamurthi, R., Michalewicz, Z.: Teaching puzzle-
based learning: development of basic concepts. Teach. Math.
Comput. Sci. 10(1), 183-204 (2012)

8. Gogolla, M., Biittner, F., Richters, M.: USE: a UML-based specifi-
cation environment for validating UML and OCL. J. Sci. Comput.
Program. 69, 27-34 (2007)

9. Gogolla, M., Hilken, F., Doan, K.: Achieving model quality through
model validation, verification and exploration. Comput. Lang. Syst.
Struct. 54, 474-511 (2018). https://doi.org/10.1016/J.CL.2017.10.
001

10. Groza, A.: Modelling Puzzles in First Order Logic. Springer
Nature, Cham, Switzerland (2021)

11. Groza, A., Baltatescu, M.M., Pomarlan, M.: Minefol: A game for
learning first order logic. In: 2020 IEEE 16th International Con-
ference on Intelligent Computer Communication and Processing
(ICCP), pp. 153-160. IEEE (2020)

12. Groza, A., Nitu, C.: Natural language understanding for logical
games. arXiv preprint arXiv:2110.00558 (2021)

13. Kastner, A., Gogolla, M., Doan, K.H., Desai, N.: Sketching a
Model-Based Technique for Integrated Design and Run Time
Description. In: Proc. STAF 2018 Workshops, Workshop Model-
Driven Engineering for Design-Runtime Interaction in Complex
Systems (DeRun 2018), p. 529-535 (2018)

14. Kumar, A.N.: Epplets: A tool for solving parsons puzzles. In:
Barnes T., Garcia D.D., Hawthorne E.K., Pérez-Quifiones M.A.
(eds.) Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, SIGCSE 2018, Baltimore, MD,
USA, February 21-24, 2018, pp. 527-532. ACM (2018). https://
doi.org/10.1145/3159450.3159576

15. Lara, J.D., Guerra, E., Cuadrado, J.S.: When and how to use multi-
level modelling. ACM Transact. Softw. Eng. Methodol. (TOSEM)
24(2), 1-46 (2014)

16. Liu, T., Gonzalez-Maldonado, D., Harlow, D.B., Edwards, E.E.,
Franklin, D.: Qupcakery: A puzzle game that introduces quantum
gates to young learners. In: Doyle M., Stephenson B., Dorn B., Soh
L., Battestilli L. (eds.) Proceedings of the 54th ACM Technical
Symposium on Computer Science Education, Volume 1, SIGCSE
2023, Toronto, ON, Canada, March 15-18, 2023, pp. 1143-1149.
ACM (2023). https://doi.org/10.1145/3545945.3569837

17. Meyer, E.F., Falkner, N., Sooriamurthi, R., Michalewicz, Z.: Guide
to teaching puzzle-based learning. Springer (2014)

18. Ortiz-Garcia, E.G., Salcedo-Sanz, S., Leiva-Murillo, J.M., Pérez-
Bellido, A.M., Portilla-Figueras, J.A.: Automated generation and
visualization of picture-logic puzzles. Comput. Gra. 31(5), 750—
760 (2007)

19. Orwant, J.: EGGG: automated programming for game generation.
IBM Syst. J. 39(3.4), 782-794 (2000)

20. Rosenhouse, J.: Games for your mind: the history and future of
logic puzzles. Princeton University Press, New Jersey (2022)

21. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 2nd Edition (2004)

22. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting
Your Models Ready for MDA. Addison-Wesley, 2nd Edition (2004)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Martin Gogolla was professor for
Computer Science at University
of Bremen, Germany and head
of the Research Group Database
Systems. He has retired in 2020
but is still teaching and doing
research. His interests include soft-
ware development with object-
oriented approaches and formal
methods in system design. He is
still working on concepts and tools
for languages like UML and OCL.

Jesis Sénchez Cuadrado is an
Associate Professor at the Lan-
guages and Systems Department
of the University of Murcia. His
research is focused on Model Driven
Engineering (MDE) topics, notably
model transformation languages,
meta-modelling and domain spe-
cific languages and recently in
the application of Al to software
modeling. On these topics, he has
published several articles in jour-
nals and peer-reviewed conferences,
and developed several open source
tools. His e-mail address is
jesusc@um.es and his web-page is http://sanchezcuadrado.es.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3408877.3439548
https://doi.org/10.1145/3408877.3439548
https://doi.org/10.1016/J.CL.2017.10.001
https://doi.org/10.1016/J.CL.2017.10.001
http://arxiv.org/abs/2110.00558
https://doi.org/10.1145/3159450.3159576
https://doi.org/10.1145/3159450.3159576
https://doi.org/10.1145/3545945.3569837
http://sanchezcuadrado.es

	Developing configurations and solutions for logical puzzles with UML and OCL
	Abstract
	1 Introduction
	2 The basic idea
	2.1 Designing puzzles
	2.2 Solving puzzles
	2.3 Modeling puzzles

	3 Automatic generation of puzzle games
	3.1 Focusing on operations, clues and invariants
	3.2 Model configuration
	3.3 Classifying our model

	4 Building and playing games
	4.1 Architecture
	4.2 Specifying puzzles
	4.3 Storing and loading puzzles
	4.4 Playing games
	4.5 Implementation

	5 Validation
	5.1 A simple, tribute puzzle
	5.2 Complex puzzle with involved solution derivation process
	5.3 Puzzles stemming from literature
	5.4 Puzzles stemming from the web
	5.5 Student survey on logical puzzles
	5.6 Closing remarks on validation

	6 Related work
	6.1 Puzzles in education
	6.2 Solving puzzles
	6.3 Developing puzzles
	6.4 The industry of logical puzzles

	7 Conclusion and future work
	References

