Software & Systems Modeling (2020) 19:1139-1161
https://doi.org/10.1007/510270-019-00740-1

SPECIAL SECTION PAPER l‘)

Check for
updates

A verified catalogue of OCL optimisations

Jestis Sanchez Cuadrado’

Received: 7 February 2019 / Revised: 13 June 2019 / Accepted: 20 June 2019/ Published online: 2 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

OCL is widely used by model-driven engineering tools with different purposes like writing integrity constraints for meta-
models, as a navigation language in model transformation languages or to define transformation specifications. Another
scenario is the automatic generation of OCL code by a repair system. These generated expressions tend to be complex and
unreadable due to the nature of the generative process. However, to be useful this code should be simple and resemble
manually written code as much as possible when a developer must manually maintain it. There exists refactorings approaches
for manually written OCL code, but there is no tool targeted to the optimisation of OCL expressions which have been
automatically synthesised. Moreover, there is no available catalogue of OCL refactorings which can be integrated seamlessly
into a tool. In this work, we contribute a set of refactorings intended to optimise OCL expressions, notably covering cases likely
to arise in generated OCL code. We also contribute the implementation of these refactorings, built as a generic transformation
catalogue using bento, a transformation reuse tool for ATL. This makes it possible to specialise the catalogue for any OCL
variant based on Ecore. Moreover, we propose a method to verify the correctness of the implemented catalogue based on
translation validation and model finding. We describe the design and implementation of the catalogue and evaluate it by
optimising a large amount of OCL expressions and proving the correctness of each optimisation execution. We also derive
working implementations of the catalogue for ATL, EMF/OCL and SimpleOCL made available in a tool called BeautyOCL.

Keywords Model transformations - OCL - Refactoring - Verification

1 Introduction

OCL [39] is used in model-driven engineering (MDE) in a
wide range of scenarios, such as the definition of integrity
constraints for meta-models and UML models, to navigate
models in model transformation languages and as input for
model finders, among others. The most usual scenario is that
OCL constraints are written by developers who can choose
their preferred style, and thus tend to write concise and read-
able code. A completely different scenario is the automatic
generation of OCL constraints. In this setting, the style of

Communicated by Prof. A. Pierantonio, A. Anjorin, S. Trujillo, and H.
Espinoza.

Work funded by project RECOM (Spanish MINECO,
TIN2015-73968-JIN, AEI/FEDER/UE) and a Ramén y Cajal 2017
grant (RYC-2017-237) co-funded by MINECO (Spain) and the
European Social Fund.

B Jesus Sanchez Cuadrado
jesusc@um.es

I Universidad de Murcia, Murcia , Spain

the generated constraints is frequently sub-optimal, in the
sense that it may contain repetitive expressions, unnecessary
constructs (e.g. too many let expressions), trivial expressions
(e.g. false = false), etc. This is so since synthesis tools typ-
ically use templates (or sketches in program synthesis [44])
whose holes are filled by automatic procedures. There are
scenarios in which the generated code needs to be maintained
manually by a developer, like IDE autocompletion facilities
and automatic program repair. In these cases, a developer is
likely to expect code which is simple and looks like manually
written.

The problem faced by the implementor of a non-trivial
OCL synthesiser is to address the trade-off between the main-
tainability of the synthesiser and the quality of the generated
code. Thus, the implementor could try to design the syn-
thesiser in a way that favours the generation of concise and
simple OCL expressions, but this introduces additional com-
plexity at the core of the synthesiser which can be hard to
manage. An alternative is to generate OCL code in the easi-
est way from the synthesiser’s implementation point of view,
and then have a separate simplifying process to handle the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00740-1&domain=pdf

1140

J.S. Cuadrado

task of generating simple and readable code. Our experience
developing tools that generate OCL code [11,12] indicates
that the second alternative is better, because it allows us to
decouple two different concerns, namely the synthesis proce-
dure and the optimisation of the generated OCL expressions
in this case. Moreover, this enable the reuse of the optimiser
for another applications.

In this work, we propose a catalogue of optimisations for
OCL expressions, especially targeted to OCL code generated
automatically. The catalogue is implemented as a generic
transformation component using benté [19], and it has been
specialised for ATL, EMF/OCL and SimpleOCL in order
to show its reusability. We have evaluated the catalogue by
applying it to a large amount of OCL expressions, show-
ing its usefulness to reduce the complexity of automatically
generated expressions. Moreover, the transformations in the
catalogue have been verified to be correct with an approach
based on translation validation [41] and SAT solving. This
is, to best of the author’s knowledge, the first set of ATL
transformations for which a practical correctness verification
procedure exists. Finally, there is a working implementation
of the catalogue (BeautyOCL), which has been integrated in
ANATLYZER!, our IDE for ATL model transformations. The
catalogue can be easily extended with new simplifications
and specialisations by submitting pull requests to the avail-
able GitHub repository.>

This work is based on [18], which has been extended as
follows:

— An extended version of the catalogue. The new cata-
logue increases the number of applicable optimisations
by 100% in the experiments.

— Detailed explanations, including details about the custom-
made transformation engine used to execute the optimi-
sations.

— A practical correctness verification method based on
translation validation. Using this method, a number of
bugs in the catalogue were identified and fixed.

— A new evaluation of the catalogue, now also including
the verification of the correctness of the applied optimi-
sations and a performance evaluation.

Organisation

Section 2 motivates this work through a running exam-
ple. Section 3 describes the catalogue of optimisations, and
Sect. 4 introduces the framework used to develop the cata-
logue as areusable component. Section 5 presents the method
used to verify the catalogue. The work is evaluated in Sect. 6,
and Sect. 7 presents related work. Finally, conclusions are
presented in Sect. 8.

! http://anatlyzer.github.io.
2 http://github.com/anatlyzer/beautyocl.

@ Springer

2 Motivation and running example

The context of this work is program synthesis tools for model-
driven engineering which may generate sub-optimal OCL
code. An instance of this kind of tools is ANATLYZER, the
IDE [13] for ATL transformations that we have implemented.
It features a static analyser powered by constraint solving
which has a high degree of precision [11], plus a quick fix
facility which allows users to automatically generate and
integrate pieces of OCL code which fix non-trivial problems
in their transformations [14]. ANATLYZER can also verify that
a transformation satisfies a set of OCL invariants by gen-
erating source OCL pre-conditions [12]. From the usability
point view, the main concern of our tool was that the gener-
ated OCL expressions were often accidentally complex due
to the automatic procedure used to generate them. In practice,
this means that users may not use the quick fix feature because
the OCL expressions which are automatically produced are
unnecessarily too complex, making their understanding dif-
ficult. This problem is not exclusive to our approach, but it
is acknowledged in other works [25,35]. Thus, the results of
this work are directly applicable to any OCL-based synthesis
tool. This includes tools for model transformation by exam-
ple [50], repairing of MDE artefacts [14] or the generation of
pre-conditions [36]. Besides, with the emergence of search-
based software engineering approaches, the applications of
this work are expected to increase [23].

In the following we present the running example which
will be used throughout the paper. We will use an excerpt
of the PNML2PetriNet transformation, from the Grafcet to
PetriNet scenario in the ATL Zoo?, slightly modified to show
interesting cases. Figure 1 shows the source and target meta-
models of the transformation, and Listing 1 shows an excerpt
of the transformation.

1 rule PetriNet {

2 from n : PNML!NetElement

3 to p : PetriNet!PetriNet (

4 elements < n.contents,

5 arcs < n.contents— select(e | e.oclIsKindOf(PNML!Arc))
6)

7}

8

9 rulePlace {

10 from n: PNML!Place

1 to p:PetriNet!Place(...)
12}

13

14 rule Transition {

15 from n : PNML!Transition
16 to p:PetriNet!Transition (...)
17}

18

19 rule PlaceToTransition {

20 from n: PNML!Arc (

21 n.source.ocllsKindOf(PNML!Place) and n.target.ocllsKindOf(PNML!
Transition)

22)

23 to p : PetriNet!PlaceToTransition (

24 "from" <— n.source,

3 http://www.eclipse.org/atl/atI Transformations/.

http://anatlyzer.github.io
http://github.com/anatlyzer/beautyocl
http://www.eclipse.org/atl/atlTransformations/

A verified catalogue of OCL optimisations

141

Fig. 1 Source and target 0.1 -
meta-models of the running Net Petri (@ | t; Element
Element Net elements St
example Vlabels name: String
Label *tarcs | ,
text: String ' Arc |Transition | |P|ace
I 1 welgh.t: Integer from PMo to ffrom
Arc source | NetContent name: String
Element
target TransitionToPlace I
|Transition| |Place| PlaceToTransition l_i
PNML meta-model (source) Petri net meta-model (target)
25 "to" « n.target In general, a synthesiser uses a template and tries to fill

26)
27}

29 rule TransitionToPlace {
30 from n : PNML!Arc (

31 —— The developer forgets to add n.source.oclIsKindOf(PNML!Transition)
32 n.target.ocllsKindOf(PNML!Place)

33)

34 to p : PetriNet!TransitionToPlace (

35 "from" < n.source, —— Problem here, n.source could be a Place

36 "to" < n.target

37)
38}

Listing 1 Excerpt of the PNML2PetriNet ATL transformation.

Consider the bug introduced in line 31 due to a missing
check in the filter which enables the assignment of a Place
object to a property of type Transition. A valid fix would be to
extend the rule filter with not n.source.ocllsKindOf(PNML!Place).
This is, in fact, what ANATLYZER generates by default since it
just uses the typing of the from <— n.source binding (line 35)
to deduce a valid fix. However, a simpler and more idiomatic
expression would be n.source.ocllsKindOf(PNML!Transition).

Once fixed, we could be interested in generating a meta-
model constraint for PNML to rule out invalid arcs (e.g. an
arc whose source and target references point to places only
or to transitions only). The implementation of quick fixes
in ANATLYZER Will generate a constraint like the one shown
in Listing 2. The constraint is generated without taking into
account the possible optimisations that could be made. This
means that the code generator may generate verbose code
because its job is just to produce a piece of code that it is
semantically correct. In the example, the conditionals check-
ing v1.ocllsKindOf(Arc) are superfluous, but this is the general
schema of the quick fix that produces correct code in all cases.

1 Arcallinstances()— forAll(v1 |

2 if v1.oclIsKindOf(Arc) then

3 v1.source.ocllsKindOf(Transition) and v1.target.ocllsKindOf(Place)
4 else

5 false

6 endif or

7 if v1.oclIsKindOf(Arc) then

8 v1.source.ocllsKindOf(Place) and v1.target.oclisKindOf(Transition)
9 else

0 false

1 endif

1
1

Listing 2 Automatically generated invariant to rule out invalid arcs in a
Petri net

the holes using some automated procedure. Figure 2 shows
the schema to generate pre-conditions used in ANATLYZER.
To generate a constraint like the previous one, our system
would identify all rules dealing with Arc elements, that is,
any rule whose input pattern has Arc or one of its subtypes (if
any). Then, it would merge rule filters replacing occurrences
of the a variable defined in the input pattern of the rules
with the iterator variable v. This schema based on “if-then-
else” is cumbersome, but it is necessary because there is no
short circuit in OCL and therefore, a simple and expression
would not work in the general case. Hence, our goal is to
simplify these kinds of expressions into more idiomatic code,
as shown in the Listing 3.

1 Arcallinstances()— forAll(v1 |
2 (v1.source.ocllsKindOf(Transition) and v1.target.ocllsKindOf(Place)) or
3 (v1.source.ocllsKindOf(Place) and v1.target.oclisKindOf(Transition))

Listing 3 Simplified invariant to rule out invalid arcs in a Petri net

In the rest of this paper, we present our approach to
optimise OCL code, in particular targeting automatically
synthesised OCL code. As we will see, it is expected that
such code has unnecessary complexity and contains repeti-
tive expressions and itis many times difficult to read. The next
section presents the catalogue, and the following describes
the framework with which the catalogue has been made
reusable.

3 Catalogue of OCL optimisations

This section describes through examples the most relevant
optimisations currently implemented in the catalogue. The
examples are presented using excerpts of standard OCL code,
independent of concrete OCL implementations.

3.1 Types of optimisations

The catalogue has been created based on the author’s experi-

ence building ANATLYZER, but it can be easily extended as new
needs arise from other tools. The optimisations are targeted

@ Springer

1142

J.S. Cuadrado

PNML!Arc.allInstances()->forAll(v]|

compatible with Arc?

rule PlaceToTransition {

if v.oclIsKindof([EIERIEEENENS) then

>® from a : PNML!Arc (
a.source.oclIsKindOf(PNML!Place) and

M a.target.oclIsKindOf(PNML!Transition)
replace a by v

else

false
endif
or

i v.oclIskindof([ENIHNRICIEIED then

)

to p : PetriNet!Place2Transition (..)
}
rule TransitionToPlace {

PNML!Arc (

>® from a :
M. a.target.oclIsKindOf(PNML!Place) and
else

false
endif
or ...

)

Fig.2 Schema for constraint generation

towards OCL code which has been generated automatically,
and their effect on it can be of three types, which are non-
exclusive.

— Simplifications. This category corresponds to optimisa-
tions which reduce the size of the OCL expressions. Most
of the optimisations fall into this category.

— Idiomatic. This corresponds to optimisations that gen-
erate code which looks more idiomatic, as if it was
written by a human. The first example in the previ-
ous section falls into this category, since it is more
idiomatic to write n.source.ocllsKindOf(Transition) than not
n.source.oclisKindOf(Place).

— Performance. Some optimisations may have a positive
effect on performance (even if it is modest), whereas oth-
ers may have a negative effect.

Table 1 summarises the optimisations in the catalogue
indicating their categories. Each category may have one
or more sub-categories, and for each one, there may be
several variants implemented as transformation rules. Each
sub-category is associated with one or more of the effects
mentioned above. The rest of the section presents these cat-
egories. In the explanation, we assume that it is possible to
access the following information:

— Type of an expression. Given an OCL expression, there
is an operation type O f (expr) which returns its type.

— Superclasses of a type. Given a meta-class, this operation
returns its superclasses.

— Nullness of an expression. Given an OCL expression,
there is an operation isNonUndefined(expr) which
returns #rue when the expression never yields an OclUn-

@ Springer

a.source.oclIsKindOf(PNML!Transition)

)
to p :
}

PetriNet!Transition2Place (..)

defined value. This operation needs to be conservative in
the sense that if must always return false is there is the
possibility that expr is OclUndefined.

— Property access type. Given a property access, it returns
the type of the accessed property.

— Comparison of two expressions. This is a compare
(exprl, expr2) operation which returns frue if both
expressions are exactly the same.

In Sect. 4, we explain how this operations are made
available to the actual transformations which implement the
optimisations.

3.2 Literal simplifications

This set of simplifications replaces operations over primi-
tive values by their results. For instance, an operation like
1 < O is replaced by false by applying a constant-folding
simplification. This category also covers the simplification
of collection expressions like Set {Set{ 1}}— flatten() = Set{1}.

Another kind of simplification is to apply rules for the
identity element of each arithmetic or logical operation. For
instance, tokens + 0 would be simplified to tokens.

Itis worth noting that this kind of expressions will be rarely
written by a developer, but are likely to appear in synthesised
OCL code.

3.3 Operators
This set of optimisations intends to exploit the semantics of

operators to remove unnecessary operands or to make the
expression more idiomatic and readable.

A verified catalogue of OCL optimisations

1143

Table 1 Summary of the different categories of optimisations

Optimisation Effect Action
Literals
1 Operations with literals S Constant-folding
2 Identity element S Apply rules of identity elements
Operators
3 Same operand S Remove unneeded operand
4 Sequence of equalities SIP Generate Set keyT, ..., keyN—includes(value)
Built-in operations
5 Built-in Sp Evaluate operations over literals
Iterators
6 Literal body Sp Remove the iterator
7 Unused iterator variable Sp Replace iterator by its body
Let expressions
8 Noisy let expression 1P, Inline let expressions
Type comparisons
9 oclIsKindOf S Replace ocllsKindOf by true
10 Extract common supertype SI Replace sequence of ocllsKindOf by a common supertype
Conditionals
11 Unshort-circuiting SP, Replace ocllsKindOf by true
12 Dead if/else branch S Remove if expressions
13 Replace by condition S Replace a conditional by its condition
14 Replace by if/then S Replace a conditional by then or else branch
15 Equal cond. and then exp. SP Replace a conditional by its condition
16 If fusion S Merge the then (or else) branches of two conditionals
17 Complementary conditions S Identifies and remove complementary conditions in nested conditionals
18 Intro. operation into cond. 1 Concatenate an operation to both branches of a conditional

S Simplification, / idiomatic, P performance (positive), P, negative impact in performance

Same operand Given a boolean expression, it uses the com-
pare operation to check if both operands are the same in order
to remove one of them. The following listing shows examples
for the and and or operators.

Original

place.name ='green’ or place.name = 'green’
place.name ='green’ and place.name =green’

Simplified

place.name ='green’
place.name ='green’

Sequence of equalities This optimisation deals with the sce-
nario in which a sequence of the same logical operation
checks the equality (or inequality) of the same sub-expression
multiple times. The following example shows the optimisa-
tion for and and or operators.

Original

—— Sequence of or—equalities with similar ‘key’

place.name ='green’ or place.name = 'red’ or place.
name = "yellow’

—— Sequence of or—inequalities with similar 'key’

place.name <> ‘green’ or place.name <> 'red’ or
place.name <> yellow’

—— Sequence of and—equalities with similar ’key’

place.name ='green’ and place.name = red’ and
place.name ="yellow’

—— Sequence of and—inequalities with similar 'key’

place.name <> ‘green’ and place.name <> 'red’ and
place.name <> yellow’

Simplified

—— More idiomatic and readable version

Set {'green’, 'red’, 'yellow’ }—includes(place.name)

—— More idiomatic and readable version

not Set { ‘green’, red’, 'yellow’ }—includes(place.
name)

—— The operations can only yield false

false

—— More idiomatic and readable version

Set {'green’, 'red’, 'yellow’ }—excludes(place.name)

@ Springer

1144

J.S. Cuadrado

The generated code is more readable and can even be more
efficient if the transformation engine caches the literal col-
lection. Moreover, the literal collection could be factorised
into a constant or a helper by another refactoring triggered
by the user to give it a human name (e.g. TrafficLights in the
case of the example).

3.4 Built-in operations

This set of optimisations are related to the semantics of built-
in operations of the OCL library, in particular when used with
empty collections and default values. The following listing
shows a few examples.

Original

places—size() >=0
Sequence { }—isEmpty() / notEmpty()
Sequence {}—>sum()

Simplified

true
true / false
0

In the current implementation, we have considered mainly
sequence operations, but the set of rules is easily extensi-
ble with new ones which cover additional operations. For
instance, it would be relatively easy to implement a sim-
plification rule which takes an expression like "size() and
generates 0.

3.5 Iterators

This set of simplifications deals with iterator expressions
which can be removed or whose result can be computed at
compile time.

Literal body The following listing shows the three optimisa-
tions implemented up to now. The simplifications for select
also apply to reject just by swapping the behaviour of True
select and False select.

Original

—— Unnecessary collect

Place.alllnstances()— collect(p | p)—select(p | ...)
—— True select

Place.allinstances()— select(p | true)— collect(p | ...)
—— True forAll

Place.alllnstances()— forAll(p | true)

Simplified

—— Unnecessary collect
Place.allinstances()—select(p | ...)
—— True select
Place.alllnstances()— collect(p | ...)
—— True forAll

true

Unused iterator variable An iterator expression applies its
body to every element of a collection. Thus, it is expected

@ Springer

that the iterator variable is used within its body. In the case
of boolean iterator expressions like forAll and exists, the body
can replace the whole iteration expression because the result
does not depend on the collection’s values (except the case in
which the collection is empty which has to be treated inde-
pendently). In the case of non-boolean iterator expressions
like select, a conditional can be introduced. The following
listing shows examples of the optimisations.

Original

NetContent.allinstances()—forAll(c |
Place.allinstances()— forAll(p |
not c.name.ocllsUndefined());

NetContent.allinstances()—forAll(c |
Place.allinstances()— exists(p |
not c.name.ocllsUndefined());

Arcallinstances()— collect(a |
Place.alllnstances()
—select(p |
not c.name.ocllsUndefined())
—select(p| a.source =p);

Simplified

NetContent.allinstances()—forAll(c |
Place.allinstances()—isEmpty() or
not c.name.ocllsUndefined());

NetContent.allinstances()—forAll(c |
Place.allinstances()— notEmpty() and
not c.name.ocllsUndefined());

Arc.allinstances()— collect(a |
if not c.name.ocllsUndefined() then
Place.alllnstances()— select(p | a.source = p)
else
Set {}
endif);

This optimisation may improve execution performance
since the collection whose iterator variable is not used does
not need to be traversed anymore. It may also improve read-
ability and comprehension because the developer does not
need to understand that the iterator is actually useless.

3.6 Noisy let expressions

Let expressions are useful when a large expression is used
many times; otherwise, it tends to introduce unnecessary
noise. This optimisation takes into account the size of the
assigned expression and the number of usages in order to
remove such let expressions. The following listing shows an
example.

Original

let src = arc.source in

let tgt = arc.target in
src.ocllsKindOf(PNML!Place) and
tgt.oclisKindOf(PNML!Transition)

Simplified

arc.source.ocllsKindOf(PNML!Place) and
arc.target.ocllsKindOf(PNML!Transition)

A verified catalogue of OCL optimisations

1145

The main concern with this optimisation is that it may
break well-crafted code, when the developer intended to
organise a set of logical steps into let variables. Thus, the
optimisation should only be applied for synthesised code
which is known to generate repetitive let expressions, and
not to optimise handwritten code.

3.7 Type comparison optimisations

These optimisations are aimed at removing unnecessary type
comparisons using ocllsKindOf or to simplify a complex
chain of type comparisons into a simpler one.

Remove ocllsKindOf expression An example of this sim-
plification is shown in Fig. 2 and Listing 3, and it is also
repeated below with a simpler expression.

Original

Arc.allinstances()— forAll(a |
a.ocllsKindOf(Arc))

Simplified

Arc.allinstances()— forAll(a | true)

The application condition of this simplification is as
follows: if an expression expr is a single type compar-
ison in the form exprocllsKindOf(T), we check whether
typeOfiexpr) = T or whether T <: typeOf{expr) (i.e. T is
a supertype of typeOfiexpr)), in which case we can replace
the whole expression with true. There is, however, an addi-
tional check to be done to safely apply the optimisation. We
use the isNonUndefined operation to ensure that expr cannot be
OclUndefined, because OclUndefined.oclKindOf(T) = false. This
issue was detected using the verification procedure explained
in Sect. 5.

This optimisation is not applicable to oclisTypeOf because
it is only at runtime that we can be sure that an element
has exactly the given type. For instance, Arc does not have
any subclass in the meta-model, but it might be possible to
evaluate the OCL expression using a model which conforms
to an extension of the PNML meta-model for which we have
defined a subclass of Arc.

Replace subclass checking with superclass This simpli-
fication takes a chain of or expressions in which each
sub-expression checks the type over the same sub-expression
and tries to simplify it to a unique type check over a common
supertype.

For example, the listing below (left) is intended to rule out
arcs from the contents reference. This simplification recog-
nises that all subtypes of NetContentElement are checked, and
the simpler n.ocllsKindOf(PNML!NetContentElement) can be used
instead.

Original

aPetriNet.contents— select(n |
n.oclisKindOf(PNML!Place) or
n.ocllsKindOf(PNMLI!Transition))

Simplified

aPetriNet.contents— select(n |
n.ocllsKindOf(PNML!NetContentElement))

The application condition of this simplification is rel-
atively complex to implement, hence the advantage of
implementing it in a reusable module. A binary operator must
be composed by only “or” sub-expressions, and each sub-
expression must apply an oclIsKindOf operator to the same
source expression. Then, we extract the set of types used as
arguments of the oclIsKindOf operations (¢ypes). From this
set, we obtain the most general common supertype (sup)
of all of these classes (if any), with the constraint that all
subclasses of such supertype are “covered” by the classes in
types. This constraint is expressed with the following recur-
sive operation, which checks if a meta-class (self) is included
in types (the set of types used in the ocliskindOf operations)
or all its subclasses must appear in such a set (the recursive
call).

context Class

def : isCoveredBy(types : Set(Class)) =

if types—includes(self) then
true
else
self.subclasses—notEmpty() and

self.subclasses—forAll(c | c.isCoveredBy(types))
endif;

In the example, the most general supertype satisfying this
constraint is NetContentElement. This is so because its set of
subtypes is completely covered by Transition and Place. In
contrast, NetContent is not a valid result because Arc is not
in the set of types compared by the expression. One con-
cern with this simplification is that for some cases explicitly
checking the subtypes could be more readable than the sim-
plified code, since it evokes more clearly the vocabulary of the
transformation meta-model. An alternative is to parameterise
the optimisation with a threshold indicating the minimum
number of “oclIsKindOf checks” that needs to exists in the
original code to trigger it.

3.8 Conditionals

Remove dead if/else branch This is the most basic simplifi-
cation of conditionals. Given a true or a false literal in the
condition, the corresponding then or else parts are used to
replace the conditional in the AST. For instance, if true then
‘a’ else 'b’ endif can be simplified to ‘a’.

Replace conditional by its condition The conditional can
be replaced by its condition when the then and else branches
are true and false, respectively.

@ Springer

1146

J.S. Cuadrado

Original

if elem.ocllsKindOf(PN!Place) then
true

else
false

endif

if not elem.oclIsKindOf(PN!Place) then
false

else
true

endif

Simplified

elem.oclIsKindOf(PN!Place)
elem.oclIsKindOf(PN!Place)

Replace conditional by then/else branches The conditional
can be replaced by its then or else branches when both are
the same, and thus, the condition is irrelevant.

Original

if place.name = red’ then
place.tokens— size()
else
place.tokens— size()
endif

Simplified

place.tokens— size()

Equal condition and then expression. A simple but useful
simplification is recognising that the condition and the then
branch (or e/se branch) of an if expression are the same, and
thus, they always yield the same result.

Original

if place.tokens—size() = 1 then
place.tokens—size() = 1

else
false

endif

Simplified

place.tokens—size() = 1

—— If the else branch of the original expression
—— is true, then the whole expression can be
—— replaced by true

If fusion This optimisation applies when there is a binary
operation between the results of two if expressions whose
conditions are the same. In this case, it is safe to inline the
then and else branches of the second expression in the first
one, as in the following example:

@ Springer

Original

if elem.ocllsKindOf(PN!Place) then
elem.tokens—size() > 1

else false endif

and

if elem.oclIsKindOf(PN!Place) then
not elem.name.ocllsUndefined()

else true endif

Simplified

if elem.oclIsKindOf(PN!Place) then
elem.tokens—size() > 1 and
not elem.name.ocllsUndefined()
else
false and true
endif

The optimised version is more concise, and at the same
time enables more simplification opportunities (e.g. false and
true can now be simplified).

Unshort-circuiting OCL does not have short circuit for
boolean expressions. Thus, automatic synthesis procedures
need to take special care to produce safe boolean expressions.
For instance, the expression arc.source.ocllsKindOf(PNML!Place)
and arc.source.tokens is unsafe because the tokens feature will
be accessed regardless of the result of the first type compar-
ison (i.e. if arc.source is a Transition). Hence, a runtime error
will be raised. The usual solution is to write nested condi-
tionals, one for each boolean sub-expression, which typically
leads to unreadable code. In the case of synthesised code, the
situation is exacerbated since it is likely that the synthesiser
implementation always generates nested conditionals to stay
on the safe side.

In its simplest version, the optimisation checks whether
the condition is independent of the then or else branches.
This means that we need to ensure that both expressions can
be evaluated at the same time. This is exemplified in the
following listing, in which the condition and the then branch
are independent since they access different properties of the
arc element.

Original

if arc.source.ocllsKindOf(Place) then
arc.target.oclisKindOf(Transition)
else
false —— could also be true
endif);

Simplified

—— When the else branch is false
arc.source.ocllsKindOf(Place) and
arc.target.ocllsKindOf(Transition)

—— When the else branch is true
arc.source.ocllsKindOf(Place) implies
arc.target.ocllsKindOf(Transition)

A verified catalogue of OCL optimisations

A more complex scenario is exemplified in the following
listing (left), which shows a piece of code in which short
circuit evaluation is not actually necessary because the name
feature is defined in a superclass of Place, and also recognises
that there are nested conditions which can be merged into
one. Therefore, it can be simplified as shown in the right part
of the listing.

Original

if arc.source.ocllsKindOf(PNML!Place) then
if arc.source.name <> OclUndefined then
‘plc’ + arc.source.name
else
‘'no—name’
endif
else
'no—name’
endif

Simplified

if arc.source.oclIsKindOf(PNML!Place) and
arc.source.name <> OclUndefined then
'plc’ + arc.source.name

else
‘no—name’

endif

This simplification makes use of the expression compar-
ison operation (i.e. the compare operation described at the
beginning of the section) to be able reason more accurately
about what can be simplified, and also uses type-related oper-
ations like typeOf and featureAccess in order to reason about
property accesses. Another variant of this optimisation can
also be implemented, for instance for checking OclUndefined
conditions using the isNonUndefined operation.

A caveat is that the optimisation may modify code that has
been legitimately crafted to use a conditional for establishing
an evaluation order in which simpler conditions are checked
first, in order to improve performance. To address this situ-
ation, our engine can be configured with a set of elements
which can (or cannot) be simplified. In this way, an smart
synthesiser can protect the original code against unwanted
changes. For instance, in ANATLYZER a quick fix modifies the
ATL transformation in-place but we are interested in apply-
ing the optimiser only to the elements modified by the quick
fix. Hence, the BeautyOCL API allows a “match scope” to
be defined. In the case of a quick fix, the scope is represented
by the root element that is generated or modified in-place,
so that only this element and its children are matched and
optimised.

Complementary conditions In a pair of nested conditionals,
the inner conditional may not be necessary when its condi-
tion is just the complement of the outer conditional. In the
following example, it can be seen that the inner conditional is
always taken because its condition is always true (e.g. > 10
and <= 10 covers the whole spectrum of integer values).
Moreover, this would enable the application of the optimisa-
tion which will replace the inner conditional by 1.

1147
Original
if place.tokens > 10 then
10
else
if place.tokens <= 10 then
1
else
10
endif
endif
Simplified
if place.tokens > 10 then
10
else
if true then
1
else
10
endif
endif

Introduce operation into conditional Given an binary oper-
ator or an operation call with one argument, in which the
source or the argument is a conditional, it is typically more
idiomatic to apply the operation to both branches of the
conditional. For instance, in the following example the opti-
misation introduces > 10 into the conditional, which is more
readable (notably when there are more conditionals involved)
and also enables more optimisations.

Original

if place.tokens = 0 then
1

else
place.tokens

endif > 10

Simplified

if place.tokens = 0 then
1>10
else
place.tokens > 10
endif

This optimisation can be parameterised with the maxi-
mum complexity allowed on the embedded operation. In this
example, it is clear that the literal 0 is small enough. How-
ever, if the expression is too large, applying this rule will lead
to less unreadable code.

4 Framework

This section describes the design of the reusable component
to optimise OCL expressions. We have designed the cata-
logue of optimisations as a set of reusable transformations
using the notion of concept-based transformation compo-
nents [19]. Our aim is to deal with the fact that there are
several implementations of OCL which could be benefited
from automatic optimisations. In the EMF ecosystem, we can

@ Springer

1148

J.S. Cuadrado

find the standard OCL distribution (EMF/OCL) [21], Sim-
pleOCL [49], OCL embedded in the ATL language [28], the
OCL variant of Epsilon [22], etc. These implementations are
incompatible among each other, due to a number of reasons,
including different representations of the abstract syntax
tree, questions related to the integration of OCL in another
language, different OCL versions, different supported and
unsupported features (e.g. closure operation is not supported
in ATL), access to typing information, etc. However, all of
them have the same semantic underpinnings, and we aim
at bridging the structural differences among them in order
to amortise the effort of developing the catalogue of OCL
optimisations.

4.1 Overview

Our framework is based on the notion of concept and
generic transformation component [19]. It has been techni-
cally implemented using the facilities provided by benté to
develop reusable transformation components [15].

A transformation component encapsulates one or more
reusable transformations, which need to be specialised for
their use with a concrete meta-model. Figure 3 shows a sim-
ple component intended to simplify OCL expressions, for
example true and true — true. The interface of a compo-
nent is its concept (label 1). A concept is a description of
the structural requirements that a meta-model needs to fulfil
to allow the instantiation of the component with a concrete
meta-model (e.g. a particular OCL implementation in this
case). In the example, the concept only contains the classes
to represent two kinds of OclExpression, boolean literals and
binary expressions, since this is the only information that

OoCL
OCL

E Binary simplification
1 left

the generic transformation requires to perform its work. The
reusable transformation is expressed as a transformation tem-
plate (label 2), written in ATL in the case of bentd. A template
is a regular transformation developed against a concept. To
instantiate the component for a specific meta-model (label 3),
a binding describing the correspondences between the meta-
model and the concept is written, which in turn induces an
adaptation of the template to make it compatible with the
meta-model. In this simple example, the component is being
adapted to work simplifying one kind of ATL expression
(logical expressions). Hence, the result of the specialisation
procedure is a new ATL transformation whose transforma-
tion rules match and transform ATL elements (label 5). For
instance, the adaptation procedure has changed BinaryExpr to
OperatorCallExpr modifying the rule filter to make it work prop-
erly, according to the binding specification.

The catalogue that we have developed consists of several
transformations which target the refactoring of OCL expres-
sions. Figure 4 shows the architecture of the solution. In
this design, the optimisation component has a set of small
transformations, each one targeting only one kind of optimi-
sation, which have been described in the previous section.
In comparison with previous approaches which assumed one
concept per transformation [19,43], in this work all trans-
formations share a common OCL-based concept plus two
additional concepts to enable parameterised access to type
information and expression comparison facilities (see Sec-
tion 4.3). The output is a set of rewriting commands, which
will be interpreted by a custom in-place engine (described
below). Given a specific OCL implementation for which
we want to reuse the optimisation component, we must
implement a binding between the concrete OCL meta-model

ATL meta-model * arguments

OclExpression

o OclExpression 1 right

f 1 source
TN\

Operation

BooleanExp

BinaryExpr

value : Boolean

operator: String

(9 !

@ :

<<typed>>

//:;;ss OclExpression

to OclExpression
class BooleanExp
to BooleanExp
class BinaryExp
to OperatorCallExp
when self.arguments->size() = 1

feature BooleanExp.value is symbol

rule binary_boolean {
from b : OCL!BinaryExpr (
b.left.oclIsKindOf(OCL!BooleanExp) and
b.target.oclIsKindOf (OCL!BooleanExp)
to ...
}

feature BinaryExpr.operator is néﬁi//

Automatic specialization

|)
»
Y

a
with a higher-order transformation

Fig.3 A simple component

@ Springer

BooleanExp CallExp |&

symbol : Boolean

name : String

Operator
CallExp

<<typed>>

rule binary_boolean { a2

from b : ATL!OperatorCallExp (
if b.arguments->size() = 1 then
b.source.oclIsKindOf(OCL!BooleanExp)
and b.arguments->first()
.0c1IsKindOf (OCL !BooleanExp)
else false endif
to ...

}

[§)
&

A verified catalogue of OCL optimisations

1149

OCL simplification component

Specialization for ATL

ocL sliced — ATL
superimposed OCL-based Bindings meta-model

concept concepts for ATL ~

» d

' i typed by
e typed by :

yping i r
concept “‘\\ L@—/ Simplications
. In-place Command for ATL
Comparison -~ templates meta-model
concept
typed by interprets
Execution f_°r ATL/OCL ATL-based ATL/OCL
ATL expressions expression in-place engine simplified
Fig.4 Architecture of the generic component and its application to optimise ATL/OCL expressions
Fig.5 Actions meta-model * 3ctions
InPlaceAction
source : EObject
I I I [|
| Remove | Replace SetProperty Clone Composite
- - Action
target : EObject propName : String ignored[*] : String ctio

(ATL/OCL in the figure) and the OCL concept meta-model.
Given the binding and the component the benté tool derives a
new optimisation component specialised for ATL. This is fed
into the in-place engine to apply the optimisations to concrete
ATL expressions.

4.2 Transformation templates

To develop the different transformation templates of the cat-
alogue, we use ATL as our implementation language since
this is the language supported by benté. However, the in-
place mode of ATL is quite limited, and it is not adequate to
perform the rewritings required to implement the catalogue.
Hence, we extended the in-place capabilities of ATL by
creating a simple command meta-model to represent rewrit-
ing actions, which is later interpreted by a custom in-place
engine. The rationale of choosing ATL despite of its limita-
tions for in-place transformations is due to practical matters.
First, we wanted to reuse the infrastructure provided by bento,
which currently supports ATL as the language to develop
the transformation templates. Secondly, given the motivation
of integrating the optimisations within ANATLYZER, it seems
logical to use ATL to avoid extra dependencies. Finally, Hen-
shin [3] was also considered but developing rewritings like
the ones of this work is not very natural either, since one needs
to specify every possible container type of an expression that

values[*] : EObject values[*] : EObject

is going to be replaced, so that the replacement action can be
“statically” computed. This made the Henshin specifications
too verbose. Other languages like Viatra [48] or EOL [22]
have action languages which are imperative. This compli-
cates its integration with benté because it is difficult to write a
higher-order transformations (HOT) for non-declarative lan-
guages, which is the main mechanism used by benté to adapt
transformations.

Listing 4 shows a simplification rule written in ATL and
our command language. A conditional expression like if true
then thenExp else elseExp endif is rewritten to thenExp. The exe-
cution of the rule creates a Replace command which indicates
which element (source) needs to be substituted by which ele-
ment (target).

1 helper context OCL!OclExpression def: isTrue() : Boolean = false;
2 helper context OCL!BooleanExp def:isTrue() : Boolean = self.
booleanSymbol;

3
4 rule removelf {

5 from o : OCL!IfExp (o.condition.isTrue())
6 to a: ACT!Replace

7 do{

8 a.source < o;

9 a.target < o.thenExpression;

10 }

n o}
Listing 4 Simplification rule

Actions language. Figure 5 shows the meta-model rep-
resenting the actions supported by our in-place engine. The
are five kind of actions:

@ Springer

1150

J.S. Cuadrado

— Remove. Removes an element (pointed by the source
property). The element will also be removed from all
references pointing to it.

— Replace. Replaces an element (pointed by the source
property) with the element pointed by the target prop-
erty. The target element may be an existing element or a
newly created element.

— SetProperty. Establishes the value of a given property of
the source object.

— Clone. It clones a source object, but leaving unassigned
the features listed in the ignored property, or setting such
features to the objects given in values (if values is not
empty).

— Composite action. Represents a sequence of actions
which must be executed together in a certain order.

These five kinds of actions are enough for our implemen-
tation needs. Simple transformation rules typically consist of
a Replace action plus the creation of an OCL element which
is used to replace the matched element. Complex rules con-
sist of a CompositeAction which normally contains cloning of
some objects, replacements and property set actions.

In-place engine. The execution of an in-place transformation
specified using the action language outputs a target model
which contains both action elements and new OCL elements.
Our in-place transformation engine interprets and applies
replacement actions over the source model. Algorithm 1
shows the transformation algorithm. It works by executing
transformations and evaluating commands using an iterative,
as-long-as-possible algorithm (line 2). Each transformation
of the catalogue is tried in a pre-defined order (line 5-6). If
one or more matches are found for a transformation, we try
to execute all compatible matches. There are two compati-
bility checks. Firstly, the matched element must be in scope
(line 9). This is so because we want to avoid the situation in
which we transform elements which should not be optimised,
like manually written code. Secondly, we check that a given
match is not incompatible with a previous rewriting (line 11),
which will happen when a matched element is an ancestor of
an already transformed element. If these conditions are met,
the rewriting actions are applied (line 13). The transformed
element is then added to the transformed list for the next com-
patibility check. Finally, the tryTransform flag must be set in
order to make sure that we check all transformations again
the next round.

In this way, for a given optimisation all possible matches
are computed, and we apply as many optimisations as
possible in one transformation round, before trying other
optimisation. In addition, all the transformations are executed
in a pre-defined order, and termination has to be guaranteed
by ensuring that the generated commands only reduce the
given expression, and for those that do not reduce an expres-

@ Springer

Input: An expression to be optimised, referred to as (exp)
Input: A set of transformations, referred to as (catalogue)
Input: An AST element which acts as scope for the transformation (scope)
Output: The rewritten input expression
1 def execute (exp, catalogue, scope):
tryTransform = true
while tryTransform do

2

3

4 tryTransform = false

5 foreach rrafo in catalogue do

6 matches = execute(trafo, exp)

7 transformed = empty list

8 foreach match in matches do

9 if not match is within scope then

10 | continue

11 if transformed has an ancestor of match.source then
12 | continue

13 apply actions of match // this actually rewrites the expression
14 add match.source to transformed

15 tryTransform = true

16 end

17 end

18 end

19 end

Algorithm 1: Transformation algorithm used by the in-
place engine.

sion (like “If fusion) we need to make sure that there are no
other transformations which undo their work. In this sense,
it is possible to extend ANATLYZER to enforce this property
statically to some extent, which is part of our future work.

4.3 Concept design

A transformation template is a regular transformation, devel-
oped in some transformation language, which is typed against
a concept. A concept is akin to a meta-model, but it contains
the minimum number of elements for the transformation to
work. To reuse the template with a concrete meta-model, one
needs to provide a binding between the concept elements
and the concrete meta-model elements. In our implementa-
tion, transformation templates are developed in ATL, typed
against Ecore meta-models which act as transformation con-
cepts. A key element in a generic component is the design
of such concepts. Our framework requires three concepts,
which are depicted in Figure 6. The OCL concept represents
the elements of the OCL language which will be subject
to optimisations. The Typing concept provides a mechanism
to access typing information for OCL expressions, whereas
the Comparison concept provides a way to determine if
two expressions are equal. These latter two concepts are
hybrid concepts, as defined in [20], since they provide hook
methods which will be implemented by each specialisation.
Essentially, these hybrid concepts allow us to implement the
operations described at the beginning of Sect. 3 for each con-
crete OCL technology.

OCL concept A concept should contain only the elements
required by the transformation template. This is intended
to facilitate its binding when it is going to be reused and
to remove unnecessary complexity from the transformation

A verified catalogue of OCL optimisations

1151

source - <<singleton>> <<singleton>>
p OclExpression ExprTyping Comparator
4 typeOf(OclExpression) : Ctype same(OclExpression,
I I accessType(PropertyCallExp) : Ctype OclExpression) : Boolean
PropertyCallExp I IteratorExp isNonUndefinedOclExpression) : Boolean

e name: String modelName(VarDcl) : String

| NavExp | Operation
superTypes

CallExp Clype
CClass DataType
OCL Concept (excerpt) Typing concept Comparison concept

Fig.6 Concepts used in the simplification component

template implementation. However, if we strictly use this
approach to implement the catalogue, we would have many
transformations whose concepts have many shared elements.
For example, all simplification transformations which use
operators would need to define a new OperatorCallExp class.
It is thus impractical to build each concept separately. More-
over, it would require us to have as many bindings as reused
transformations. Therefore, we have designed a superim-
posed concept which contains all the elements required by
the transformations of the catalogue. From this concept, we
can extract automatically the minimal concept of each trans-
formation using the approach described in [16], so that each
individual rewriting could be used in isolation if needed. The
superimposed OCL concept (i.e. it merges all the concepts
used by the individual rewritings) has the property that it
does not necessarily need to be exactly like the OCL specifi-
cation, but it may have less elements which are not handled
by the simplifications (e.g. the property name in a naviga-
tion expression is irrelevant, while the name of an iterator
is important). The OCL concept currently implemented con-
tains only 27 classes and 27 features. This is much smaller
than the 85 classes of the ATL meta-model and the 54 classes
of the EMF/OCL meta-model. Nevertheless, the more opti-
misations are implemented, the larger the OCL concept will
become. For instance, for the extended version of the cata-
logue we had to include seven more classes.

Typing concept There are a number of transformations in the
catalogue which require access to the types of the abstract
syntax of the OCL expression. One alternative would be to
extend the OCL concept with elements to represent typing
information. However, this approach is not flexible enough
since it assumes that concrete OCL meta-models have their
expressions annotated with types. An alternative design is to
have a separate concept with operations to retrieve the typing
information. Each concrete binding is in charge of providing

access the typing information computed by underlying OCL
type checker.

Comparison concept The comparison concept is also a
hybrid concept, but it addresses the problem of comparing
two OCL expressions to determine if they are equivalent.
The concept does not prescribe any mechanism to compare
the expressions, but the implementations may decide to use
simple approaches (e.g. comparing string serialisations) or
more complex ones (e.g. clone detection). The only require-
ment is that it must be reliable, in the sense that it cannot be
heuristic.

5 Verifying the catalogue correctness

The catalogue of transformations must be correct for external
tools to integrate it in a confident and reliable manner. In this
context, correctness means to satisfy the semantics preser-
vation property, since an optimisation should not change the
functional behaviour of the original OCL expression. For
example, in ANATLYZER our aim is to use the catalogue to
generate simplified code for quick fixes. Should one of the
transformations in the catalogue be incorrect, an ANATLYZER
user could introduce a bug in her code inadvertently. Hence,
a practical procedure to verify the correctness of the cat-
alogue is needed. One approach would be to implement a
verified transformation (akin to a verified compiler [31,32]),
but it would require an operational semantics of OCL, spec-
ified in a formal language like Coq, as well as developing
the transformations in the same formal language. This is not
currently a scalable approach since its implementation cost
is very high, although recent developments like CoqTL [46]
may make it possible. The alternative used in this work has
been to resort to a form of translation validation [38,41],
which is explained in the following.

@ Springer

1152

J.S. Cuadrado

Fig.7 Translation validation
example. In this case it uncovers
an error in the first optimisation

Arc.allInstances()->forAll(a | . name
a.source.name.oclIsKindOf (Name)) PNML

NetContent
A\

meta-model

l apply optimisations

N Arc | source | NetContent
Arc.allInstances()-> target ement
true
forAll(e | true) /\
ocllsKindOf (#4) Iterators (#5)

PN

l construct verification formula

(
&

let original = Arc.allInstances()->forAll(a |
a.source.name.oclIsKindOf (Name)) in
let optimised = true in

not ((original implies optimised) and
(optimised implies original))

: Transition

Translation validation is an approach to verify compilers
in which rather than proving in advance that the compiler
always produces a target code which correctly implements
the source code (compiler verification), each individual
translation (i.e. a run of the compiler) is followed by a valida-
tion phase which verifies that the target code produced on this
run correctly implements the submitted source program [41].
A translation validation approach requires an equivalence
criterion (or “correct implementation” relation) between the
original program and the compiled program. There are sev-
eral ways to specify such criterion, which are discussed in
more detail in Sect. 7. In our case, we use an off-the-shelf
OCL-based model finder, USE Validator [30], to ask for a
counter-example of the equivalence between the original and
the optimised OCL expressions. Hence, USE Validator is our
“semantic oracle” to verify each rewriting of an OCL expres-
sion.

Our approach is based on the following steps, which are
illustrated by means of an example in Fig. 7.

1. Given a source OCL expression, written in some spe-
cific technology, apply the catalogue of optimisations
specialised for such technology. Figure 7 (label A) is
a piece of OCL expression in ATL which is going to
be subject to optimisations. In this case, two optimisa-
tions are applied (label B), one that replaces the usage of
ocliskindOf by true, and a subsequent optimisation which
removes the iterator expression.

2. Extract a source expression (original) and a rewrit-
ten expression (optimised). This step is straightforward
when, for all variable usages in the original expres-
sion, the corresponding variable declarations appear in
the expression to be rewritten. In the example, the only
variable usage, a, is also declared in the expression,
Arc.allinstances()— forAll(a | a.source.name.ocllsKindOf(Name)).
However, if the expression would have been a.source.name.

@ Springer

Equivalence formula (negated)

Counter-example

ocliskindOf(Name), the declaration of a would not appear
in the expression. Since we need to feed the model finder
with a complete, well-formed OCL expression, we would
add a top level expression like Arc.allinstances()— forAll(a |
<original-expr>). The general algorithm is based on iden-
tifying all unbound variable references, and construct
a nested sequence of “T.allinstances— forAll” expressions
according to the type T of each variable usage.

3. To prove that both expressions are equivalent, construct
the following equivalence formula (label C), as suggested
in [26]:

not ((source = target) and (target =—> source))

We resort to USE Validator to verify the satisfiability of
the formula®.

4. If the model finder outputs a counter-example, this means
that both expressions are not equivalent and there is a
bug in one of the applied optimisations (label D). If
no counter-example is found, then both expressions are
equivalent (within the bounds given to the model finder),
and it proves that the applied optimisations preserve the
semantics of the original expression.

This method provides several advantages. First of all, it
enables the practical and pragmatic verification of the cat-
alogue of optimisations, which can be implemented with a
modest amount of resources, compared to other verification
methods. Another advantage, in this case compared to testing,
is that OCL is decidable within a given bounds (i.e. a search
scope consisting of the minimum and maximum number of
allowed objects of each type and similar bounds for prim-
itive values). This means that the model finder will always

4 ANATLYZER provides a convenient access to USE Validator which
enables seamless analysis of ATL/OCL and EMF/OCL expressions.

A verified catalogue of OCL optimisations

1153

find a counter-example within such bounds if it exists, which
would signal the existence of a bug in one of the optimisa-
tion transformations, and we can use the counter-example as
input model for debugging.

Section 6.2 evaluates the application of this verification
method to the catalogue. As will be shown, it is generally
possible to verify an optimisation in a few milliseconds. It is
thus possible to integrate the verification method at runtime in
any tool in which the catalogue is integrated. In particular, this
can be used as an option in ANATLYZER, so that optimisations
are verified at runtime and a rollback is applied whenever the
verification step fails.

The example of Fig. 7 shows an actual error found
in the catalogue using this procedure. At first glance, the
optimisation looks correct since the original expression
a.source.name.ocliskindOf(Name) will always be frue because
the type of name is Name and therefore, the ocliskindOf call will
always return true. However, the witness model obtained
with the verification procedure indicates that the optimisation
is invalid when we have a model which includes a Place with-
out a name. This is because OclUndefined.ocllsKindOf(Name)

= false, and the original implementation neglected this
case. To fix this, we introduced the isNonUndefined operation
in the typing concept, in order to restrict the cases in which
the implementation is applicable.

Finally, this approach also opens an interesting possibil-
ity, which is to have “optimistic” optimisations, in the sense
of dropping some of the application conditions, letting the
decision about whether this was a good decision or not to the
verification procedure. For instance, in a expression like the
following:

Arc.allinstances()— select(a | a.source.name <> OclUndefined)
—select(a | a.source.name.ocllsKindOf(Name))

It can be difficult to determine statically that a.source.name
will never be undefined, and thus, our optimisation is appli-
cable’. If we aim at maximising the amount of applicable
optimisations, we can drop the isNonUndefined check in the
optimisation implementation and rely on the verification pro-
cedure to determine if the optimisation was properly applied.
We aim at studying the possibilities of this approach in future
work.

6 Evaluation

This section reports the evaluation of our reusable catalogue
of optimisations and the associated verification method. The
evaluation aims to answer three research questions:

5 ANATLYZER does provide this analysis, but most OCL tools do not.
For these cases, an optimistic approach would enable more aggressive
optimisations.

— RQI: Are the optimisations proposed in the catalogue
useful to deal with automatically generated OCL code?

— RQ2: Are the implemented optimisations in the catalogue
correct?

— RQ3: To what extent is the catalogue reusable?

To answer RQ1 and RQ2, we have used ATL/OCL expres-
sions automatically generated by ANATLYZER as a testbed to
apply the catalogue and verify its correctness. For RQ3 we
have specialised the catalogue for three OCL implementa-
tions.

6.1 RQ1: Usefulness

In this experiment, we evaluate the usefulness of our cata-
logue of optimisations to deal with realistic, automatically
generated OCL expressions by analysing whether the opti-
misations are able to reduce its complexity.

We have applied the optimisations of the catalogue to two
different kinds of automatically generated OCL constraints,
both for the ATL variant of OCL. The first experiment con-
sisted on simplifying OCL pre-conditions generated from
target invariants of model transformations as described
in [12]. We optimised 24 constraints coming from invariants
defined in three transformations used by existing literature
HSM2FSM, ER2REL and Factories2PetriNets. The second
experiment applied the optimisations to the quick fixes gen-
erated by ANATLYZER for the 100 transformations of the ATL
Zoo, focussing on those quick fixes which generate rule fil-
ters, binding filters or pre-conditions since they are the most
interesting in terms of complexity of the generated expres-
sions. Table 2 summarises the results of the experiments. The
complete data, and the scripts and instructions to reproduce
the experiments are available at the following URL: http://
sanchezcuadrado.es/exp/beautyocl-sosym19.

For the pre-conditions, a total of 1415 optimisations were
applied to 24 expressions. In average, 58.96 simplifications
were applied for each expression; however, the median was
9 simplifications. This is because some expressions were
particularly large and involved more simplifications. For
instance, two of the expressions had more than 3500 abstract
syntax elements, which enabled the application of more than
300 simplifications for each one. In the quick fixes experi-
ment, a total of 9510 simplifications were applied to 1731
expressions. We express the simplification power of the cat-
alogue (shown in the “% nodes removed by simplifications”
row) by counting the number of AST nodes before and
after the simplifications. The reduction is 18% for the pre-
conditions dataset and 36% for the quick fixes dataset (Table
3).

Regarding which optimisation categories are more use-
ful, the results are disparate. Some optimisations occur much
more often in one experiment than in the other. For instance,

@ Springer

http://sanchezcuadrado.es/exp/beautyocl-sosym19
http://sanchezcuadrado.es/exp/beautyocl-sosym19

1154

J.S. Cuadrado

Table 2 Summary of the results
for the experiment with the
pre-conditions dataset

Table 3 Summary of the results
for the experiment with the
quick fixes dataset

simplifications for literals and conditionals are very useful

Pre-conditions

#Simp. % Avg. Median
Literals 8 0.57 - -
Identity element 8 0.57 - -
Same operand 0 0.00 - -
Sequence of equalities 0 0.00 - -
Built-in operations 26 1.84 - -
Iterators 8 0.57 - -
Noisy let 0 0.0 - -
Remove oclIsKindOf expression 22 1.55 - -
Replace subclass checking with superclass 0 0.00 - -
Remove dead if/else branch 22 1.55 - -
Replace conditional by its condition 0 0.00 - -
Replace conditional by then/else branches 0 0.00 - -
Equal condition and then expression 0.00 - -
If fusion 267 18.87 - -
Unshort-circuiting 168 11.87 - -
Complementary conditions 4 0.28 - -
Introduce operation into conditional 882 62.33 - -
Total simplifications 1415 100 58.96 9
% of nodes removed by simplifications 18.02% 2.54%

Quixk fixes

#Simp. % Avg. Median
Literals 862 9.06 - -
Identity element 74 0.78 - -
Same operand 0 0.00 - -
Sequence of equalities 152 1.60 - -
Built-in operations 0 0.00 N N
Iterators 706 7.42 - -
Noisy let 153 1.61 - -
Remove oclIsKindOf expression 1795 18.87 - -
Replace subclass checking with superclass 0 0.00 - -
Remove dead if/else branch 1795 18.87 - -
Replace conditional by its condition 11 0.12 - -
Replace conditional by then/else branches 0 0.00 - -
Equal condition and then expression 706 7.42 - -
If fusion 863 9.07 - -
Unshort-circuiting 2376 24.98 - -
Complementary conditions 0 0.00 - -
Introduce operation into conditional 17 0.18 - -
Total simplifications 9510 100 5.49 2
of nodes removed by simplifications 35.56% 20.75%

for quick fixes, but less useful for pre-conditions. This sug- code.
gests that optimisations are to some extent specific to the

@ Springer

kind of generated code and the method used to generate such

A verified catalogue of OCL optimisations

1155

At first glance, some of the simplifications are quite sim-
ple, others are more complex (e.g. those based on the typing
and comparison concepts). Combining all of them, the user
gets a much better experience. For instance, the following
listing shows the situation before and after the use of Beau-
tyOCL for a real quick fix.

Original

RDM!Antecedent.allinstances()— select(i | i.ocllsTypeOf(RDM!
Antecedent))—
forAll(i | i.containsAtom—forAll(v |

if v.ocllsKindOf(RDM!Atom) then
v.name ='IndividualPropertyAtom’

else
false

endif or if v.oclIsKindOf(RDM!Atom) then
v.name ='ClassAtom’

else
false

endif or if v.ocllsKindOf(RDM!Atom) then
v.name ='DataRangeAtom’

else
false

endif or if v.ocllsKindOf(RDM!Atom) then
v.name = 'DataValuedPropertyAtom’

else
false

endif or if v.oclIsKindOf(RDM!Atom) then
v.name = 'SamelndividualAtom’

else
false

endif or if v.ocllsKindOf(RDM!Atom) then
v.name = DifferentIndividualAtom’

else
false

endif or if v.oclIsKindOf(RDM!Atom) then
v.name = 'BulitinAtom’

else
false

endif));

Simplified

RDM!Antecedent.allinstances()— select(i |i.ocllsTypeOf(RDM!
Antecedent))—
forAll(i | i.containsAtom—forAll(v |
Set {'BulitinAtom’, 'DifferentindividualAtom’, ‘SamelndividualAtom’,
‘DataValuedPropertyAtom’, 'DataRangeAtom’, ‘ClassAtom’,
‘IndividualPropertyAtom’ }—includes(v.name)));

The optimisations applied have been the following: (1) to
replace the oclIsKindOf operation by true (7 times), then (2)
to replace the if expression by its then expression (7 times)
and finally (3) to simplify the sequence of or expression
checking equalities by a Set{..}— contains(v.name) operation.
As can be observed, the result is much more readable. In
other evaluated expressions, the results are not so “beauti-
ful”, but nevertheless the expression is much more reduced
which facilitates its manual modification. It is expected that
the catalogue grows as new needs for optimisations are found,
which would improve the overall results even more.

The catalogue instantiated for ATL has been integrated
into ANATLYzER through a dedicated extension point, so
that the generated quick fixes are automatically optimised.
Moreover, a quick assist to let the user simplify a piece of
expression on demand is also available. A screencast demon-

strating this feature in more detail is available at https://
anatlyzer.github.io/screencasts/.

Regarding threats to validity, the main threat to the inter-
nal validity of these experiments is that we have only used
code synthesised by AnATLyzer. The main reason is the
lack of availability of similar tools for other OCL variants.
Another issue is that we use the number of nodes to mea-
sure the improvement of an expression after simplifications.
This metric can be misleading sometimes. For instance, the
removal of let expressions generates a simpler expression, but
it can introduce a few more nodes. A controlled experiment
with final users is required to effectively assess this question.
Another threat is that some optimisations are never applied,
and we cannot determine whether this is because they are not
really applicable or because of a bug in the application condi-
tion. To minimise this threat, we have manually searched the
original expressions to find places in which an optimisation is
not applied because of a bug in the application condition, and
we have also constructed a manual test suite. A threat to the
external validity is the number of OCL variants reused. Vari-
ants like Epsilon or USE are not considered due to not using
Ecore meta-models. This is so because our simplifications
work at the abstract syntax level, specified with Ecore. More-
over, many of them are complex transformations (e.g. use
type information or compare sub-expressions) which could
not be addressed with simple text-based transformations.

6.2 RQ2: Correctness

To validate the correctness of the catalogue, we have used
the translation validation approach explained in Sect. 5. This
section reports the results of applying the verification method
to the optimisations applied for RQ1.

For each OCL expression generated in the previous
experiment, we filter out those expressions for which no
optimisation has been applied. Then, we apply the method
explained in Sect. 5 to verify the correctness of the opti-
mised expression with respect to the original expression. To
increment the amount of expressions that can be verified suc-
cessfully, we also compute the set of ATL helpers that are
directly or indirectly used by the expression and add them
to the formula as part of operations in the meta-model. The
results are summarised in Table 4. To run the verification
procedure, the bounds of the model finder were set to a mini-
mum of 0 objects and a maximum of 5 objects per meta-class.
The verification procedure was run several times during the
development of this work, and it allowed us to discover and
fix several errors, which will be briefly discussed later. In the
following, we present the results of the last run.

For the pre-conditions data set, there were only 20 opti-
mised expressions (out of 24). No time out was set. We could
only verify eight expressions. The other ones (reported as
Failure) could not be evaluated because there is no support in

@ Springer

https://anatlyzer.github.io/screencasts/
https://anatlyzer.github.io/screencasts/

1156

J.S. Cuadrado

Table4 Results of the correctness evaluation, using 5 as object bounds
for the model finder

Correctness Pre-conditions textbfQuick fixes
#Optimisations 20 1411
#Correct 8 908
#Invalid 0 0
#Timeout 0 12
#Failure 12 491
Solving times (s)
Average 4.272 0.532
Mean 11.953 0.014
Maximum 21.641 14.55

USE Validator for tuple types. We also measured the solving
times of the expressions which were successfully evaluated
by USE Validator. However, the obtained times are very dis-
parate, since some of the expressions are much larger than
others. Unfortunately, this dataset is too small to reach any
conclusions.

For the quick fix data set, there were a total of 1411 opti-
mised expressions. In this case we set up a time out of 15
seconds. We could verify 908 optimisations (64%), all of
which were deemed correct by the decision procedure. There
were only 12 timeouts. We inspected manually the expres-
sions which were not evaluable, and they fall in one of three
categories: (a) expressions which contain features not sup-
ported by USE Validator (e.g. maps, sequence operations,
etc.), (b) expressions which include target elements of a
model-to-model transformation and cannot be processed cor-
rectly by our translation to USE Validator and (c) expressions
which contain errors because the original transformation also
contained errors. Thus, improvements in the internal trans-
lation from ATL to USE Validator may increase the number
of verifiable expressions to a certain extent, but it is unlikely
that all of the expressions can be verified in practice.

With respect to the performance of the verification, we
have also measured the solving times of the expressions
which were successfully evaluated by USE Validator, taking
into account only those which did not timeout. The average is
0.532 seconds and the maximum is 14.55 seconds. However,
the mean is very low 0.14, signifying that the verification of,
at least, half of the applied optimisations is very fast. These
results are further explored next.

6.2.1 Performance of the verification procedure

Our verification method is a form of runtime verification
since we need to apply it for each run of the catalogue on
a given expression. In some scenarios, we may need cer-
tain guarantees that the verification will be fast enough to
avoid disturbing the user. One such scenario is the applica-
tion of a quick fix, since the user expects a rapid response

@ Springer

from the IDE. On the other hand, a model finder is normally
highly dependent on the given object bounds: if the bounds
are small, the response is likely to be fast, but it may be unre-
liable. However, as the bounds are increased, the response
time might grow in an exponential manner.

In order to understand what could be a good configura-
tion for the ANATLYZER quick fix facility, we have evaluated
how an increase of the bounds affects the correctness results
and the corresponding solving times. We wanted to know if
an increase in the object bounds will result in the detection
of an invalid optimisation which may not be catched with
lower bounds. To this end, we have run the same experiment
explained above but increasing the object bounds from 2 to
8. Table 5 shows how many optimisations have been deemed
correct, incorrect or have time out, as the object bounds are
increased. As can be observed, no invalid optimisations are
found with greater bounds. However, with smaller bounds
there are less timeouts. This suggests that for this dataset,
small bounds are sufficient and do not compromise reliabil-
ity.

Figure 8 shows the evolution of the solving time as the
object bounds are increased. In this case, we set the timeout
to 5 seconds. As can be observed, the average solving time
quickly grows when the object bounds are greater than 5.
Interestingly, the mean remains very low in all cases, sig-
nifying that this growth in the average is probably due to a
few expressions which are too complex to evaluate (i.e. those
which time out).

In general, the model finder exhibits good performance for
this scenario. This is probably due to two reasons. First of all,
because the expressions generated by the quick fixes are gen-
erally not very complex. Secondly, because our mapping to
USE Validator automatically performs meta-model slicing to
reduce the search space (i.e. remove unneeded meta-classes
and features), which is an important factor to reduce the solv-
ing time.

Altogether, this experiment shows that it is possible to
integrate our verification method in an IDE like ANATLYZER
using a reasonable maximum object bound of three or four
objects per meta-class, and a timeout of about two seconds.

6.2.2 Discovering and fixing bugs

With the help of the correctness approach, we found several
bugs in the implementation. These bugs were located not only
in the implementation catalogue but also in other involved
technologies, notably ANATLYZzER and ATL. In the process of
tracing back the root case of a bug, the fact that the verification
process outputs an actionable witness model (i.e. a regular
EMF model) was very valuable. In the following we describe
some of the discovered bugs.

A verified catalogue of OCL optimisations 1157
Ta!JIe > Correctngss results as Bounds #Optimisations #Correct #Invalid #Timeout #Failure
object bounds are increased.
Timeout is set to 5 seconds D) 1411 916 0 4 491
3 1411 908 0 12 491
4 1411 908 0 12 491
5 1411 869 0 51 491
6 1411 837 0 83 491
7 1411 836 0 84 491
8 1411 835 0 85 491
5 higher precedence. We needed to update our infrastruc-
4,5 | m Average ture to deal with this behaviour.
~ 4 ¥ Mean
3 35
g 3
g 3 Altogether, the fact that we found bugs in the catalogue
g 2 5
c ° provides working evidence of the usefulness of the verifica-
g 2 tion method, and the need of similar mechanisms to increase
g 1° the reliability of published model transformations.
1
“u I L
o M 6.3 RQ3: Reusability
2 3 4 5 6 7 8
Object bounds

Fig.8 Evolution of solving time w.r.t. object bounds

— We found a bug in the Remove ocllsKindOf expression
optimisation which was described before. We missed the
proper treatment of OclUndefined values.

— A bug in the Replace subclass checking with superclass
optimisation was uncovered by transformation which
used a meta-model with multiple inheritance (XHTML2XML
transformation). Our implementation did not properly
find the common supertype. Fixing this bug makes the
optimisation not to be applicable anymore to any of the
expressions generated in the evaluation.

— In the implementation of Unused iterator variable, there
was another semantic bug because the additional expres-
sion to check whether the collection is empty or not was
missing.

— We found implementation bugs in Sequence of equalities
and Unshort-circuiting, which were solved as well.

— We detected two errors in ANATLYzER. First, some of
the quick fixes do not generate faithful type informa-
tion along with the generated OCL code, which made the
optimisation rules take incorrect decisions. Second, there
was a bug in an internal routine which was in charge of
copying pieces of abstract syntax.

— We also found an issue with ATL. The ATL parser treats
the and/or operators with the same precedence, which is
different from the normal behaviour in which and has

The catalogue of optimisations has been designed with
reusability in mind in order to allow its specialisation for a
specific OCL variant. To assess to what extent this is pos-
sible, we have instantiated the component for ATL/OCL,
EMF/OCL and SimpleOCL. In this section we report to what
extent it is possible to reuse the catalogue for different OCL
dialects, reflecting on the advantages and limitations of the
approach.

The catalogue was first tested and debugged by writing a
binding to ATL. The binding was relatively straightforward.
The binding for EMF/OCL was also simple except for one
important issue. The designed concept expects that an Opera-
torExp has a name to identify the concrete operator. However,
in EMF/OCL an operation is identified by a pointer to an
EOperation defined in the standard OCL meta-model. Our
binding for the target model (i.e. to support the creation of
operator expressions) is not powerful enough to handle this
natively. The solution to overcome this has been to extend the
typing concept with a “setOperation” so that it is possible to
programmatically find and assign the proper EOperation if
needed. For SimpleOCL the main limitation is that it does not
compute any typing information, and thus, we could not reuse
those simplifications making use of the typing concept. This
means that the instantiated catalogue for SimpleOCL needs
to be smaller.

Regarding the size of the implementations, the ATL trans-
formation templates consist of 1593 SLOCs, whereas the
bindings for ATL, EMF/OCL and SimpleOCL are 38, 49
and 48 SLOC:s, respectively. The bindings are relatively sim-
ple mappings specifications. These figures provide some

@ Springer

1158

J.S. Cuadrado

evidence of the advantage of building transformations as
reusable components.

This experiment shows that it is possible to automatically
derive specialisations of the catalogue for several OCL vari-
ants. However, we have only shown the correctness of the
ATL specialisation, and only simple, manual test cases have
been carried out to show that the OCL/EMF and SimpleOCL
specialisations also work. Therefore, without further experi-
ments we cannot fully claim that the catalogue is reusable.

6.4 Assessment

The evaluation shows that our catalogue is useful to reduce
the size of the expressions generated by two different meth-
ods implemented in ANATLYZER. However, the best results
are obtained when the catalogue provides optimisations tar-
geted to the specific patterns of code generated by a particular
synthesiser. This suggests that catalogues of optimisations
created for other languages need to be easily extensible with
new transformations.

We have also shown that it is possible to prove the cor-
rectness of the catalogue, to a certain extent. This is a step
forward in the model transformation technology since model
transformations are typically not verified. One of the reasons
is the difficulty to apply compiler verification techniques to
model transformations. The scope of a compiler is larger
than a model transformation, so it does not pay off to apply
techniques which are costly and heavyweight. Moreover,
any technique which aims at checking semantic preservation
requires the specification of the semantics of the involved
languages, which is also costly to construct. The alternative
put forward in this paper is to use translation validation tak-
ing advantage of an OCL-based finder as its semantic anchor.
The main limitation is that this correctness procedure guar-
antees that a given execution of a transformation is correct,
within a bound, but cannot discover bugs in transformations
which have not been executed yet. That is, it is a form of
runtime verification. On the other hand, the main difficulty
to generalise this verification method to other transforma-
tions is the need of having some semantic oracle to check for
equivalence, as we do with USE Validator.

Regarding the reusability of the catalogue, our approach
is based on rewriting the original transformation to gen-
erate a new transformation which conforms to a different
meta-model. This tights our implementation to bento, which
provides this capability. An alternative which does not
require the bentd machinery would be to make our con-
cept behave as a pivot meta-model and write transformations
(instead of binding specifications) from each OCL variant to
the pivot meta-model. The catalogue would then be applied
over the pivot meta-model. However, the optimisations need
to modify the expressions in-place, and this is problematic

@ Springer

for the pivot meta-model approach since we would need
to implement a synchronising transformation to translate
the changes in the pivot model back to the original model.
Instead, the rewriting process performed by benté addresses
this issue seamlessly since there is no intermediate transfor-
mation process, but a new complete catalogue is derived for
the selected OCL variant.

At the implementation level, we have used ATL to per-
form rewritings. The experience with this project shows that
for simple rewritings it can be very effective and we have
been able to profit from the existing infrastructure. However,
for complex rewritings the main bottleneck is the difficulty
to navigate the AST and to match complex patterns using
OCL.

Altogether, the catalogue has proved useful to optimise
OCL expressions in terms of their size, thus having simpler
and perhaps more beautiful expressions. The effort invested
in the creation of the catalogue is amortised by allowing mul-
tiple instantiations. Moreover, this work is also non-trivial
case study of the application of genericity techniques to
model transformations, which can be a baseline to improve
these techniques.

7 Related work

The closest work to ours was proposed by Giese and
Larsson [25]. The motivation was to simplify constraints
generated for UML diagrams in the context of design pat-
terns. Simplifications for primitive types and collections
are proposed by means of examples. More complex cases
including conditionals, let expressions and the treatment of
oclIsKindOf expressions are not handled. We depart from
this work and propose a more extensive catalogue. Moreover,
we have developed the catalogue using a reusable approach,
with the aim of fostering its usage.

Correa et al. investigated the impact of poor OCL con-
structs on understandability [9], finding that refactored
expressions are more understandable. The experiments were
carried out on handwritten expressions; thus, it is likely that
refactorings for expressions generated automatically have an
even bigger impact on understandability. In [51], a catalogue
of refactorings for ATL transformations is presented. Some
of them are applicable to OCL, but they do not target sim-
plifications. Moreover, the authors point out the possibility
of implementing the refactorings in a language indepen-
dent way, which is now achieved with our framework. The
work of Correa and Werner presents a set of refactorings for
OCL [10]. Some of them are of interest for our case and
we also implement variants of them, particularly refactor-
ings for verbose expressions, while others are particularly
useful for handwritten OCL expressions and we do not
implement them. A complementary work with additional

A verified catalogue of OCL optimisations

1159

refactorings is presented in [42]. Cabot and Teniente [7]
proposes a set of transformations to derive equivalent OCL
expressions. Some of these transformations are simplifica-
tions, but they generally focus on equivalent ways of writing
a given OCL expression. Similarly, a set of optimisations
patterns to improve the performance of OCL expressions in
ATL programs is presented in [17]. Altogether, this work
complements existing works with new optimisations targeted
specially to automatically generated code, and contributes a
working and extensible implementation.

The notion of optimisation has been used in many
other areas, including compilers (in which they are used
pervasively), program transformation, program repair and
mutation testing. In each case the criteria to evaluate the use-
fulness of the optimisation vary. For instance, one source of
related works is expression simplification rules developed
with program transformation systems. In [33] a catalogue
of optimisations is presented for imperative languages. In
the program repair field there is a similar to need to obtain
human readable patches. In [24] the maintainability of auto-
matically generated patches is studied, considering features
like number of conditionals, descriptive variable names, etc.
However, the work was not conclusive about which elements
affect maintainability more. DirectFix is program repair sys-
tem which seeks to generate patches which are syntactically
minimal [34]. To evaluate it the authors compare against the
human-written patch and also compare AST nodes. In [4] the
metrics used to measure repair maintainability are the size of
the repair in terms of changed lines of code and the distribu-
tion of the modifications. For mutation testing, optimisations
produced by a compiler have been used to detect equivalent
mutants [29] in C and Java programs. Hence, our catalogue
can also be useful to detect equivalent mutants in OCL-based
programs.

Regarding the applicability of our approach, it is targeted
to complement tools which generate or transform OCL con-
straints. Some of them are based on filling in a pre-defined
template from a given model [2,25,45]. Other works modify
OCL expressions as aresponse to meta-model evolution [27].
These approaches could be benefited by our implementation.
Nevertheless, given that our target is automatically generated
code, it is specially well suited to complement approaches
related to the notion of program synthesis and program repair.
This is so since such approaches tend to generate “alien
code” [35] which may be problematic when humans need to
maintain the generated code. To the best of our knowledge,
there are only a few systems of this kind in the MDE and
OCL ecosystem, like our work in quick fixing ATL transfor-
mations [14] and the generation of pre-conditions [11,12,36].
Hence, we believe that this work will be also valuable to
complement OCL synthesis tools likely to appear in the
future.

The design of the typing and comparison concepts is,
to some extent, similar to the idea of Mirrors [5] which
also aims to separate reflective operations from its partic-
ular implementation. In our case, we do not want to tight
the component to the implementation based on providing
type information as annotations over the abstract syntax tree.
The typing concept introduces this intermediate layer for
flexibility.

Another set of related works concerns transformation veri-
fication. The problem of proving that a given transformation
preserves the semantics of the source language is akin to
the problem of verifying a compiler [32]. The most com-
mon approach is based on writing the compiler using some
theorem prover like Coq [32] or Isabelle/HOL [31]. In the
MBDE setting, CoqTL [46] could be used to develop trans-
formations amenable to compiler verification techniques.
Other approaches verify compilers and transformations indi-
rectly using a proof-carrying code approach (translation
validation), that is, to verify each transformation run indepen-
dently [37]. In [1] code generators are extended to generate
semantic annotations and assertions to guide a model checker
that checks that the generated code meets the UML seman-
tics. In [8] translation validation is used to validate the
SimpleGT compiler (a variant of ATL for in-place transfor-
mations). Equivalence is proved by a translation of each piece
of generated EMFTVM bytecode (the output of SimpleGT)
to the Boogie verification system, in which a formalisation
of the EMFTVM semantics has been implemented. In [40] a
translator from an asynchronous language, SIGNAL, is com-
piled to C. The equivalence criterion is based on checking
whether transition system specified by the original program
is equivalent to the transition system represented by the
generated code. In [47] a transformation from StateCharts
to PetriNets is verified by a pair of transformations to a
common transition system. In general, translation validation
requires a different equivalence criterion depending on the
nature of source and target language. Notably, our trans-
lation validation method is based on using model finding
with USE Validator as a way to implement the equivalence
criterion.

8 Conclusions

In this paper we have presented a catalogue of OCL simpli-
fications for OCL expressions, which targets code which has
been automatically generated. This catalogue has been imple-
mented as a generic transformation component, with the aim
of making it applicable to any OCL variant based on Ecore.
The current implementation fully supports ATL and has also
been partially instantiated for EMF/OCL and SimpleOCL.
The evaluation shows that the proposed simplifications are

@ Springer

1160

J.S. Cuadrado

useful and they can generally reduce the size of the expres-
sions around 35%. More importantly, we have implemented
apractical verification procedure based on translation valida-
tion which has allowed us to prove correct about 64% of the
applied optimisations. We have also shown that the perfor-
mance of the verification method is generally good enough to
use it as part of editing environments. As future work, we plan
to investigate the possibility of applying “optimistic optimi-
sations” in order to widen the application conditions of the
current optimisations. Also, we would like to extend benté to
allow using rewriting languages like Stratego [6] to develop
the transformation templates for the generic transformation
components. Another line of work is to reflect on how to opti-
mise other kinds of MDE artefacts generated automatically,
like models or meta-models.

Acknowledgements Work is funded by project RECOM (Spanish
MINECO, TIN2015-73968-JIN, AEI/FEDER/UE) and a Ramén y
Cajal 2017 grant (RYC-2017-237) funded by MINECO (Spain) and co-
funded by the European Social Fund. I would like to thank the reviewers
for their accurate and useful comments, and Javier Bermtdez Ruiz for
proofreading the first version of the manuscript.

References

1. AbRahim, L., Whittle, J.: Verifying semantic conformance of state
machine-to-Java code generators. In: International Conference on
Model Driven Engineering Languages and Systems, pp. 166—180.
Springer (2010)

2. Ackermann, J., Turowski, K.: A library of OCL specification
patterns for behavioral specification of software components. In:
International Conference on Advanced Information Systems Engi-
neering, pp. 255-269. Springer (2006)

3. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: advanced concepts and tools for in-place EMF model
transformations. In: International Conference on Model Driven
Engineering Languages and Systems, pp. 121-135. Springer
(2010)

4. Assiri, FY., Bieman, J.M.: An assessment of the quality of
automated program operator repair. In: 2014 IEEE Seventh Interna-
tional Conference on Software Testing, Verification and Validation,
pp- 273-282. IEEE (2014)

5. Bracha, G., Ungar, D.: Mirrors: Design principles for meta-level
facilities of object-oriented programming languages. OOPSLA’04,
ACM SIGPLAN Notices 50(8), 35-48 (2015)

6. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Strate-
go/xt 0.17. alanguage and toolset for program transformation. Sci.
Comput. Program. 72(1-2), 52-70 (2008)

7. Cabot, J., Teniente, E.: Transformation techniques for ocl con-
straints. Sci. Comput. Program. 68(3), 179-195 (2007)

8. Cheng, Z., Monahan, R., Power, J.F.: Formalised emftvm bytecode
language for sound verification of model transformations. Softw.
Syst. Model. 17(4), 1197-1225 (2018)

9. Correa, A., Werner, C., Barros, M.: An empirical study of the
impact of OCL smells and refactorings on the understandability of
OCL specifications. In: International Conference on Model Driven
Engineering Languages and Systems, pp. 76-90. Springer (2007)

10. Correa, A., Werner, C.: Refactoring object constraint language
specifications. Softw. Syst. Model. 6(2), 113—-138 (2007)

@ Springer

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

217.

28.

29.

30.

Cuadrado, J.S., Guerra, E., de Lara, J.: Static analysis of model
transformations. IEEE Trans. Softw. Eng. 17(3), 779-813
Cuadrado, J.S., Guerra, E., de Lara, J., Claris, R., Cabot, J.:
Translating target to source constraints in model-to-model trans-
formations. In: 2017 ACM/IEEE 20th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
pp. 12-22. IEEE (2017)

Cuadrado, J.S., Guerra, E., de Lara, J.: Anatlyzer: Anadvanced IDE
for ATL model transformations. In: 40th International Conference
on Software Engineering (ICSE). ACM/IEEE (2018)

Cuadrado, J.S., Guerra, E., de Lara, J.: Quick fixing ATL transfor-
mations with speculative analysis. Softw. Syst. Model. pp. 1-35
(2016)

Cuadrado, J.S., Guerra, E., de Lara, J.: Reusable model trans-
formation components with bentd. In: International Conference
on Theory and Practice of Model Transformations, pp. 59-65.
Springer (2015)

Cuadrado, J.S., Guerra, E., de Lara, J.: Reverse engineering of
model transformations for reusability. In: International Conference
on Theory and Practice of Model Transformations, pp. 186-201.
Springer (2014)

Cuadrado, J.S., Jouault, F., Molina, J.G., Bézivin, J.: Optimization
patterns for OCL-based model transformations. In: International
Conference on Model Driven Engineering Languages and Systems,
pp. 273-284. Springer (2008)

Cuadrado, J.S.: Optimising OCL synthesized code. In: European
Conference on Modelling Foundations and Applications, pp. 28—
45. Springer (2018)

Cuadrado, J.S., Guerra, E., de Lara, J.: A component model for
model transformations. IEEE Trans. Softw. Eng. 40(11), 1042—
1060 (2014)

de Lara, J., Guerra, E.: From types to type requirements: genericity
for model-driven engineering. Softw. Syst. Model. 12(3), 453-474
(2013)

Eclipse Modelling Framework. https://www.eclipse.org/modeling/
emf/

Epsilon. http://www.eclipse.org/gmt/epsilon

Fleck, M., Troya, J., Kessentini, M., Wimmer, M., Alkhazi, B.:
Model transformation modularization as a many-objective opti-
mization problem. IEEE Trans. Softw. Eng 43(11), 1009-1032
(2017)

Fry, Z.P., Landau, B., Weimer, W.: A human study of patch main-
tainability. In: Proceedings of the 2012 International Symposium
on Software Testing and Analysis, pp. 177-187. ACM (2012)
Giese, M., Larsson, D.: Simplifying transformations of OCL con-
straints. In: International Conference on Model Driven Engineering
Languages and Systems, pp. 309-323. Springer (2005)

Gogolla, M., Hilken, F., Doan, K.H.: Achieving model quality
through model validation, verification and exploration. Comput.
Lang. Syst. Struct. 54, 474-511 (2018)

Hassam, K., Sadou, S., Le Gloahec, V., Fleurquin, R.: Assistance
system for OCL constraints adaptation during metamodel evolu-
tion. In: Software Maintenance and Reengineering (CSMR), 2011
15th European Conference on, pp. 151-160. IEEE (2011)
Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model trans-
formation tool. Science of computer programming 72(1-2), 31
— 39 (2008). See also http://www.emn.fr/z-info/atlanmod/index.
php/Main_Page. Last accessed: Nov. 2010

Kintis, M., Papadakis, M., Jia, Y., Malevris, N., Le Traon, Y.,
Harman, M.: Detecting trivial mutant equivalences via compiler
optimisations. IEEE Trans. Softw. Eng. 44(4), 308-333 (2017)
Kuhlmann, M., Hamann, L., Gogolla, M.: Extensive validation of
OCL models by integrating sat solving into use. In: International
Conference on Modelling Techniques and Tools for Computer Per-
formance Evaluation, pp. 290-306. Springer (2011)

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
http://www.eclipse.org/gmt/epsilon
http://www.emn.fr/z-info/atlanmod/index.php/Main_Page
http://www.emn.fr/z-info/atlanmod/index.php/Main_Page

A verified catalogue of OCL optimisations

1161

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: Cakeml: a ver-
ified implementation of ml. In: ACM SIGPLAN Notices, vol. 49,
pp. 179-191. ACM (2014)

Leroy, X.: Formal verification of a realistic compiler. Commun.
ACM 52(7), 107-115 (2009)

Loveman, D.B.: Program improvement by source-to-source trans-
formation. J. ACM 24(1), 121-145 (1977)

Mechtaev, S., Yi, J., Roychoudhury, A.: Directfix: Looking for
simple program repairs. In: Proceedings of the 37th International
Conference on Software Engineering-Volume 1, pp. 448-458.
IEEE Press (2015)

Monperrus, M.: A critical review of automatic patch genera-
tion learned from human-written patches: essay on the problem
statement and the evaluation of automatic software repair. In:
Proceedings of the 36th International Conference on Software
Engineering, pp. 234-242. ACM (2014)

Mottu, J.M., Simula, S.S., Cadavid, J., Baudry, B.: Discovering
model transformation pre-conditions using automatically gener-
ated test models. In: 2015 IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE), pp. 88-99. IEEE (2015)
Necula, G.C.: Proof-carrying code. design and implementation. In:
Proof and system-reliability, pp. 261-288. Springer (2002)
Necula, G.C.: Translation validation for an optimizing compiler.
In: ACM sigplan notices, vol. 35, pp. 83-94. ACM (2000)

OMG: Object Constraint Language (OCL) (2014). http://www.
omg.org/spec/OCL/2.4/PDF

Pnueli, A., Shtrichman, O., Siegel, M.: Translation validation: from
signal to C. In: Olderog, E.R., Steffen, B. (eds.) Correct System
Design. Lecture Notes in Computer Science, vol. 1710, pp. 231-
255. Springer, Berlin, Heidelberg (1999)

Pnueli, A., Siegel, M., Singerman, E.: Translation validation. In:
International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pp. 151-166. Springer (1998)
Reimann, J., Wilke, C., Demuth, B., Muck, M., ABmann, U.:
Tool supported OCL refactoring catalogue. In: Proceedings of the
12th Workshop on OCL and Textual Modelling, Innsbruck, Aus-
tria, September 30, 2012, pp. 7-12 (2012). https://doi.org/10.1145/
2428516.2428518

Rose, L., Guerra, E., De Lara, J., Etien, A., Kolovos, D., Paige, R.:
Genericity for model management operations. Softw. Syst. Model.
12(1), 201-219 (2013)

Solar-Lezama, A., Tancau, L., Bodik, R., Seshia, S., Saraswat, V.
Combinatorial sketching for finite programs. ACM Sigplan Notices
41(11), 404415 (2006)

45.

46.

47.

48.

49.
50.

51.

Tibermacine, C., Sadou, S., Dony, C., Fabresse, L.: Component-
based specification of software architecture constraints. In: Pro-
ceedings of the 14th International ACM Sigsoft Symposium on
Component Based Software Engineering, pp. 31-40. ACM (2011)
Tisi, M., Cheng, Z.: Coqtl: An internal DSL for model transforma-
tion in COQ. In: International Conference on Theory and Practice
of Model Transformations, pp. 142—156. Springer (2018)

Varrd, D., Pataricza, A.: Automated formal verification of model
transformations. CSDUML pp. 63-78 (2003)

Varr6, D., Bergmann, G., Hegediis, A., Horviéth, A., Réth, 1., Ujhe-
lyi, Z.: Road to a reactive and incremental model transformation
platform: three generations of the viatra framework. Softw. Syst.
Model. 15(3), 609-629 (2016)

Wagelaar, D.: Simpleocl. https://github.com/dwagelaar/simpleocl
Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards
model transformation generation by-example. In: System Sciences,
2007. HICSS 2007. 40th Annual Hawaii International Conference
on, pp. 285b-285b. IEEE (2007)

Wimmer, M., Perez, S.M., Jouault, F., Cabot, J.: A catalogue of
refactorings for model-to-model transformations. J. Object Tech-
nol. 11(2), 2-1 (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Jesis Sanchez Cuadrado is a
researcher at the Languages and
Systems Department of the Uni-
versity of Murcia. His research
is focused on model driven engi-
neering (MDE) topics, notably
model transformation languages,
meta-modelling and domain spe-
cific languages. On these topics,
he has published several articles
in journals and peer-reviewed con-
ferences, and developed several
open source tools. His web-page
is http://sanchezcuadrado.es

@ Springer

http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/OCL/2.4/PDF
https://doi.org/10.1145/2428516.2428518
https://doi.org/10.1145/2428516.2428518
https://github.com/dwagelaar/simpleocl
http://sanchezcuadrado.es

	A verified catalogue of OCL optimisations
	Abstract
	1 Introduction
	2 Motivation and running example
	3 Catalogue of OCL optimisations
	3.1 Types of optimisations
	3.2 Literal simplifications
	3.3 Operators
	3.4 Built-in operations
	3.5 Iterators
	3.6 Noisy let expressions
	3.7 Type comparison optimisations
	3.8 Conditionals

	4 Framework
	4.1 Overview
	4.2 Transformation templates
	4.3 Concept design

	5 Verifying the catalogue correctness
	6 Evaluation
	6.1 RQ1: Usefulness
	6.2 RQ2: Correctness
	6.2.1 Performance of the verification procedure
	6.2.2 Discovering and fixing bugs

	6.3 RQ3: Reusability
	6.4 Assessment

	7 Related work
	8 Conclusions
	Acknowledgements
	References

